
UNIVERSITY LINZ
JOHANNES KEPLER JKU

Faculty of Engineering
and Natural Sciences

Constraint Generation and Partial Fixing for
UML Models through Transformation

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements
for the academic degree

Bachelor of Science

in

INFORMATIK

Submitted by

Stefan Luger

At the

Institute for Systems Engineering and Automation

Advisor

Univ.-Prof. Dr. Alexander Egyed M. Sc.

Co-advisor

Dipl.-Ing. Andreas Demuth

Linz, August 2013

Sworn Declaration

“I hereby declare under oath that the submitted Bachelor’s thesis has been written solely

by me without any third-party assistance, information other than provided sources or

aids have not been used and those used have been fully documented. Sources for literal,

paraphrased and cited quotes have been accurately credited.

The submitted document here present is identical to the electronically submitted text

document.”

Linz, January 9, 2014

i

“It has certainly been true in the past that what we call intelligence and scientific discovery

have conveyed a survival advantage. It is not so clear that this is still the case: our scientific

discoveries may well destroy us all, and even if they don’t, a complete unified theory may

not make much difference to our chances of survival.”

Stephen Hawking

Abstract

Working with complex models not only requires knowledge and skills to design them, but

more importantly, change triggered to model elements by humans may violate the well-

formedness or semantic design rules. Especially, semantic relationships within Unified

Modeling Language (UML) models are complicated to preserve. Model-driven engineering

standards such as the Object Constraint Language (OCL) support the necessary consis-

tency checking. However, the manual generation of such constraint expressions and in

advance the elimination of inconsistencies does not suit our needs. In this thesis, an in-

cremental model manipulation approach (achieved through the ATLAS Transformation

Language) is used to present an application for both traditional model transformation and

constraint-driven modeling with the goal to eliminate existing inconsistencies (as far as

possible). During the process of the transformation, constraints are generated to validate

the model with - all in the context of the UML. In particular, 9 different constraint-driven

scenarios, supporting class, sequence and statemachine diagrams/models, were developed.

To illustrate a successful transformation process, the updated model is validated via the

OCL subsequently. Model designers in the needs of consistency checking and constraint

generation benefit from the automatic and incremental execution provided by the imple-

mentation.

iii

Contents

Sworn Declaration i

Abstract iii

List of Figures v

List of Listings vi

1 Introduction 1

2 MDE Technologies 3

2.1 UML . 3

2.2 ATL . 9
2.2.1 EMFTVM . 13

2.3 OCL . 14

3 Motivating Example 15

4 Implementation and Discussion 19

4.1 Constraint-driven Scenarios . 19
4.1.1 Message - Operation . 21
4.1.2 Lifeline - Class . 27
4.1.3 Transition - Operation . 30
4.1.4 Message Sequence - Transition Sequence 33
4.1.5 Message - Association . 37
4.1.6 Statemachine - Class . 41
4.1.7 Statemachine - Pseudostate . 42
4.1.8 Association - Message . 43
4.1.9 Activity - Operation . 46

4.2 Usage Documentation . 48
4.2.1 Prerequisites . 48
4.2.2 Project Setup . 49
4.2.3 Execution . 50
4.2.4 Validation . 50

5 Related Work 52

6 Conclusions and Future Work 54

A Source Code 56

A.1 Sequence to Class Diagram . 56

A.2 Constraint-driven Scenarios . 59

A.3 Programmatical Launch . 77

A.4 GUI Launch . 80

Bibliography 83

iv

List of Figures

2.1 Inheritance UML Model Example. 5

2.2 Light Switch UML Model. 6

2.3 VOD UML Model. 7

2.4 VOD AR UML Model. 8

2.5 VOD AR UML Model continued. 9

2.6 Model Transformation. [1] . 10

2.7 OCL Primitive Types. [2] . 11

2.8 EcoreCopy Performance. [3] . 14

3.1 Light Switch UML Model. 16

3.2 Light Switch UML Model - Sequence to Class Transformation. 18

4.1 Inheritance UML Model Editor Validation. 26

4.2 Light Switch UML Model Editor Validation. 27

4.3 Inheritance UML Model Example. 29

4.4 Inheritance UML Model Editor Validation. 30

4.5 VOD AR UML Model Editor Validation. 33

4.6 Statemachine Constraint Violation. 37

4.7 VOD UML Model Editor Validation. 42

4.8 VOD UML Model Editor Validation. 43

4.9 VOD AR UML Model Editor Validation. 45

4.10 VOD AR UML Model Editor Validation. 47

4.11 Libraries. 49

4.12 Eclipse Project Explorer. 51

4.13 Transformation Execution SWT GUI. 51

v

Listings

2.1 ATL Module Header. 11

3.1 ATL Helper: getAssociations. 16

3.2 ATL Helper: getReceiveLifelines. 16

3.3 ATL Helper: getSendLifelines. 16

3.4 ATL Rule: Model. 16

3.5 ATL Rule: Association. 17

3.6 ATL Rule: Lifeline2Class. 17

4.1 ATL Helper: getReceiverLifelineClass. 22

4.2 ATL Helper: getMessagesByClass. 22

4.3 ATL Rule: from Section. 22

4.4 ATL Rule: using Section. 23

4.5 ATL Rule: to Section. 23

4.6 ATL Rule: do Section. 23

4.7 ATL Called Rule: NewOperation. 24

4.8 ATL Called Rule: NewOwnedRule. 24

4.9 Transformation Console Output: Message - Operation. 25

4.10 XML Output Model: Message - Operation. 25

4.11 OCL Expression: Message - Operation. 26

4.12 OCL Validation : Message - Operation. 26

4.13 OCL Validation: Message - Operation. 27

4.14 ATL Helper: getLifelineClass. 28

4.15 ATL Expression: toUpper. 28

4.16 Transformation Console Output: Lifeline - Class. 29

4.17 OCL Expression: Lifeline - Class. 30

4.18 OCL Validation: Message - Operation. 30

4.19 ATL Helper: getTransitionsByClass. 31

4.20 ATL Expression: newOps. 31

4.21 Transformation Console Output: Transition - Operation. 32

4.22 OCL Validation: Transition - Operation. 32

4.23 ATL Helper: reorderTransitions. 34

vi

Chapter 0. LISTINGS vii

4.24 ATL Helper: traverse. 35

4.25 Transformation Console Output: Message Sequence - Transition Sequence. . 36

4.26 XML Output Model: Message - Operation. 36

4.27 ATL Helper: getMessageLifelineBySendEvent. 38

4.28 ATL Rule: do Section. 38

4.29 ATL Endpoint Rule: AppendMultipleConstraints. 39

4.30 Transformation Console Output: Message - Association. 39

4.31 OCL Expression: Message - Association. 39

4.32 XML Output Model: Message - Association. 40

4.33 OCL Validation: Message - Association. 40

4.34 Transformation Console Output: Statemachine - Class. 41

4.35 OCL Expression: Statemachine - Class. 41

4.36 OCL Validation: Statemachine - Class. 41

4.37 Transformation Console Output: Statemachine - Pseudostate. 42

4.38 OCL Expression: Statemachine - Pseudostate. 43

4.39 OCL Validation: Statemachine - Class. 43

4.40 ATL Rule: to Section. 44

4.41 Transformation Console Output: Association - Message. 45

4.42 OCL Expression: Association - Message. 45

4.43 OCL Validation: Association - Message. 46

4.44 Transformation Console Output: Activity - Operation. 46

4.45 OCL Expression: Activity - Operation. 46

4.46 OCL Validation: Activity - Operation. 47

A.1 Seq2Class.atl . 56

A.2 Scenario01.atl . 59

A.3 Scenario02.atl . 61

A.4 Scenario03.atl . 63

A.5 Scenario04.atl . 64

A.6 Scenario05.atl . 67

A.7 Scenario06.atl . 70

A.8 Scenario07.atl . 72

A.9 Scenario08.atl . 73

A.10 Scenario09.atl . 75

A.11 EMFTVMLauncher.java . 77

A.12 Window.java . 80

Chapter 1

Introduction

During the last decade, the wide variety or even the absence of standards for legacy and

newly built software made it more difficult when interconnecting those systems. Further-

more, distributed and embedded software-intensive systems are in the need of Platform-

independent Models (PIM) and Platform-specific Models (PSM) to standardize compo-

nent interfaces. Model-driven Engineering (MDE) [4–6] best practices overcome this prob-

lems via the introduction of modeling standards, speaking of Uniform Modeling Language

(UML), Model Object Facility (MOF) and many more. Since the early 2000’s, the Object

Management Group (OMG) plays a key role in terms of Model-driven Software Develop-

ment (MDSD) including required standards.

Whereas the PIMs, e.g. UML, provide the necessary tools to model structure and behavior,

domain specific challenges have to be solved. Domain Specific Languages (DSL), e.g. Object

Constraint Language (OCL) [7], rely on their metamodel to describe declarative semantics

and constraints upon the model elements in context.

Besides DSLs, common transformation languages, such as Atlas Transformation Language

(ATL) [8, 9] or Query/View/Transformation (QVT) [10], generate target models from

source models through transformation. Transforming models focuses not only on genera-

tion and refactoring in general, but more importantly, considers preserving consistency,

bidirectional synchronization as well as incremental execution while improving perfor-

mance.

In this thesis, we propose a framework partially fixing UML models by taking advantage of

the ATL. As presented in [11], Jouault et al. shows the clear advantages of ATL, which sup-

1

Chapter 1. Introduction 2

ports refining mode in-place transformations. In addition to UML model transformations,

one would want to evaluate its correctness. For this purpose, given a set of consistency

checking scenarios for the UML model, the OCL is used.

The thesis is organized as follows. Chapter 2 introduces the UML specification as well as

the UML models under test, the ATL transformation possibilities and at last the OCL. A

running example illustrates a model-to-model transformation in Chapter 3. Chapter 4 is di-

vided into two sections. First, in Section 4.1, 9 constraint-driven scenario implementations

are presented. For each of them as follows:

1. Initial design choices are discussed.

2. A detailed look into the ATL module implementation is shown.

3. The OCL expressions are validated to check whether the inconsistencies were fixed

correctly.

Second, in Section 4.2, a comprehensive usage documentation lists the required steps in

order to run the proposed framework. Chapter 5 discusses related work and puts the

proposed framework in contrast. Chapter 6 sums up the thesis and discusses essential

aspects for future work. In Appendix A, the complete source code is provided in pretty

printed format.

Chapter 2

MDE Technologies

The subsequent main chapter of this thesis proposes a framework taking advantage of three

different MDE languages. Thus for each language, a brief introduction/documentation is

helpful. In detail, we will focus on purpose, architecture and API-related documentation

about the ATL, OCL and UML. According to the high popularity and development ac-

tivity within the rich Eclipse community and the OMG, those three languages are very

well considered one of the state of the art technologies in current MDE. The UML serves

as an object-oriented representation for software-intensive systems. Given an UML model

of choice, the ATL covers the transformation behavior: generating a target model based

on rules within the transformation module. As a side effect, constraints can be gener-

ated alongside the model-to-model transformation too. These constraints are formalized

with the OCL and specify consistency checks related to their UML model element in con-

text. Finally the generated OCL expressions can be used to validate the transformation’s

outcome, the target model.

2.1 UML

In [12], the OMG describes the UML in a short but detailed formalization:

“The objective of UML is to provide system architects, software engineers, and

software developers with tools for analysis, design, and implementation of soft-

warebased systems as well as for modeling business and similar processes.”

3

Chapter 2. MDE Technologies 4

The UML Version 1.1 was adopted by OMG in 1997 [13], accepted with Version 1.4.2 as the

ISO/IEC 19501 standard [14] with the current Version being UML 2.4.1 [13]. The UML

provides a wide variety of diagrams driven by the field of application, grouping them into

structural and behavioral diagrams. The implemented framework covers the most common

class, sequence and statechart (mostly refered as statemachine in this thesis) diagrams. As

the three of them contain overlapping characteristics (e.g. operations either correspond

to messages or activities), they provide a rich set of inter-relationships. These shared

characteristics are then refered as (in)consistencies, processed via the ATL transformation,

and further are checked with the help of constraints through the OCL.

Having a standardized language for modeling software-intensive systems, the UML is hu-

man readable and thus based on the Extensible Markup Language (XML) format as XML

Metadata Interchange (XMI) [12]. As a consequence of handling different metamodel ar-

chitectures, the Meta Object Facility (MOF) [15] evolved to specify a metamodel standard

architecture for the UML in the past. The UML2 metamodel used is built upon the Eclipse

Modeling Framework (EMF) 1 to satisfy the needs when working with EMF-based plug-ins

like Papyrus inside Eclipse framework. For more information please look up Subsection

4.2.1. Anyway, Papyrus provides a convenient looking graphical representation of UML

models and further is used to build UML models conforming the EMF-based UML2 meta-

model within Eclipse framework.

The following example UML models are derived from existing models in [16, 17] and were

built at the Institute for Systems Engineering and Automation 2 at JKU Linz. They cover

the needs for testing purposes of this work and will be referenced during implementation

and discussion in Section 4.1 of this thesis. These models were edited to satisfy and/or

violate specific consistency rules. Thus they will not necessary be complete or conform to

their originally intended behavior.

• A simple (Class) Inheritance UML model is shown in Figure 2.1. It consists of both a

class and sequence diagram. Class A is a subclass of C and only class A is represented

as lifeline.

• The UML model in Figure 2.2 demonstrates a simple light switch. Obviously a light

can be switched on and off. The model is used to violate mutual naming conventions

1Online at: http://www.eclipse.org/modeling/emf/.
2Online at: http://www.jku.at/sea/content/e139529/e126342/e126449.

http://www.eclipse.org/modeling/emf/
http://www.jku.at/sea/content/e139529/e126342/e126449

Chapter 2. MDE Technologies 5

between operation and message on purpose (e.g. message deactivate corresponds

to an operation deactivate()).

• In order to focus on more complicated inter-relationships between diagrams, a video

on demand system (shown in Figure 2.3) expands the set of models under test. An

user is able to stream video content by selecting a movie of choice at any time.

• As shown in Figure 2.4 and Figure 2.5, the VOD UML model is extended by the class

Service (which provides the pause feature) and an additional and more complex

statemachine behavior for class Streamer.

This models cover the needs for testing purposes of this work and will be referenced during

implementation and discussion in Section 4.1 of this thesis. These models were edited to

satisfy and/or violate specific consistency rules. Thus they will not necessary be complete

or conform to their originally intended behavior.

(a) Class Diagram. (b) Sequence Diagram.

Figure 2.1: Inheritance UML Model Example.

Chapter 2. MDE Technologies 6

(a) Class Diagram.

(b) Sequence Diagram.
(c) Light Statechart Diagram.

Figure 2.2: Light Switch UML Model.

Chapter 2. MDE Technologies 7

(a) Class Diagram.

(b) Sequence Diagram.

(c) Streamer Statechart Diagram.

Figure 2.3: VOD UML Model.

Chapter 2. MDE Technologies 8

(a) Class Diagram.

(b) Sequence Diagram.

Figure 2.4: VOD AR UML Model.

Chapter 2. MDE Technologies 9

(a) Streamer Statechart Diagram Option 1.

(b) Streamer Statechart Diagram Option 2.

Figure 2.5: VOD AR UML Model continued.

2.2 ATL

The ATL, developed by Jouault et al. [8, 9], is a model transformation language built onto

the Eclipse framework. The adaption of QVT aspects and continued support since 2006,

when the ATL first was proposed, resulted in a highly anticipated language specification

within the Eclipse Model Development Tools (MDT) 3 community.

ATL’s concept is based on Figure 2.6, where a source model Ma is transformed into a target

model Mb. Both models conform to their metamodels MMa and MMb, (e.g. UML). In

order to perform the transformation, a transformation module Mt is required. The module

conforms to its own metamodel again. According to the used MOF specification, all three

metamodels conform to the same metametamodel MMM . Basically, the ATL provides the

necessary language to describe such model transformations. The transformation process

originating from one source model then results in one or more target models [1].

The architecture of the ATL contains an engine which compiles and executes the trans-

formation module (a file with the ATL extension). The ATL2004, ATL2006 as well as

ATL2010 compiler translates the source code to byte-code stored in the ASM file format

(similar to an assembly language file). Finally the byte-code is executed by the ATL Vir-

3Online at: http://www.eclipse.org/modeling/mdt/.

http://www.eclipse.org/modeling/mdt/

Chapter 2. MDE Technologies 10

Figure 2.6: Model Transformation. [1]

tual Machine (VM) having its own instruction set. As the VM does not rely on the ATL

itself, other VMs specializing on other languages can be developed to replace the regular

VM [18].

For the following paragraphs we will give a brief introduction of the ATL specification. As

an in-depth reference guide, the documentation at Eclipse wiki [2, 19] is suggested.

In general, the ATL is based on the OMG OCL. Introducing the data types, they are

grouped into six different kinds with their root element being OclAny. OclAny behaves

like the type Object in Java, where by default a base set of operations is provided. As

the type names are relatively meaningful, we refer to Figure 2.7 and do not go further into

detail.

Besides primitive type operations, collection type operations are worth mentioning. As one

would expect, basic statements are supported: iterate, collect, exists, select,

includes, excludes, isEmpty, notEmpty, etc.

Equally to the OCL, the ATL provides the keyword self which refers to the instance of

such specific type. Just as a quick note on comments, they are expressed starting with two

dashes followed by any characters: -- comment text.

Beginning at the very start of an ATL module, Listing 2.1 includes the most important

statements required for an UML transformation. In the first line of code, an optional

compiler is declared, which in this case happens to be the EMFTVM (EMF Transformation

Chapter 2. MDE Technologies 11

Figure 2.7: OCL Primitive Types. [2]

VM). We will introduce EMFTVM in the Section after the ATL documentation. In the

second line, the Eclipse UML2 metamodel is declared. The actual transformation module

starts in the third line with the keyword module, followed by the name which has to be

equal to the file name (e.g. Seq2Class.atl). Concluding in the fourth line, three different

characteristics are specified. After the keyword create, OUT represents the target model

separated by its metamodel tag UML2. The keyword from signalizes the transformation

to create a different target model. In contrast, one could replace it with refining, which

would result in an in-place transformation. An execution through refining mode means

that model elements which are not matched by any rule, stay unaffected. Whereas the

normal execution mode produces a different target model, the refining mode just alters the

source model. However, the source model IN and its metamodel UML2 have to be declared

anyway.

1 -- @atlcompiler emftvm
2 -- @nsURI UML2=http://www.eclipse.org/uml2/4.0.0/UML
3 module Seq2Class;
4 create OUT: UML2 from IN: UML2;
5 ...

Listing 2.1: ATL Module Header.

Chapter 2. MDE Technologies 12

Subsequent ATL helpers are considered methods if compared to Java. They consist of

optional parameters, a context and a return value. Helpers excel at navigational support

through models and are programmed in declarative fashion only.

The most important components of ATL modules are rules. They are distinguished by the

designator in front of keyword rule. A rule is divided into a maximum of four sections. The

from section (source pattern) specifies the element type which has to be matched in order

to trigger the rule. On the contrary, the to section (target pattern) encloses the actual

transformation process. For each attribute of the target element, a new value based on the

source model information can be assigned. Additionally, the optional using section allows

the definition of variables in the scope of the rule, but only through declarative statements.

The optional do section even allows imperative programming style, but one has to be aware

that the do block is only executed when the to section has finished already.

Four different rules can be implemented:

• rule: A matched rule, in case no designator is specified, represents the most common

rule used within transformations. Its name is derived due the fact the source pattern’s

type being matched onto an element with equal type. Matched rules may contain all

of the previously explained sections.

• lazy rule: A lazy rule can be called from any statement within the module scope.

However, the appropriate element type has to match the from section.

• unique lazy rule: This rule always returns exactly the same target element

corresponding to a specific source element.

• called rule: Called rules allow optional parameters, but do not need a from

section. Since they can be called from any statement within the module scope, and

are often used for the generation of new element instances through the to and do

sections.

Only within the do section, imperative programming mode is allowed. Usually, one would

avoid the usage of imperative style because the complexity and readability might gets worse.

Although, imperative style allows the usage of common programming statements such as

if and for statements, declarative expressions are limited to nested let expressions.

Nevertheless, primitive type operations, the assignment as well as collection statements

are used in both programming styles.

Chapter 2. MDE Technologies 13

To conclude with this section, let us quickly mention two of the key advantages the ATL

has over QVT. Whereas ATL is considered hybrid and therefore allows a mixed (declarative

and imperative) programming style, QVT separates both having to use either the one or

other. Due to this, the ATL has the capability of designing rules more versatile [20, 21]. In

[22], Amstel et al. measured the execution times of a simple transformation for ATL and

QVT. Based on worst case scenario testing, the execution time for both languages differs

significantly, resulting in ATL transformations having the better performance results. In

conclusion, based on continued support, recently made improvements and the key features

offered, the choice for ATL was rather obvious.

The base ATL Eclipse plug-in used for the practical work is listed in Subsection 4.2.1.

2.2.1 EMFTVM

As this work deals with EMF-based models and more complex transformation, and neither

the ATL2004, ATL2006 or ATL2010 VM supports called rules with refining mode, the

more specific EMFTVM [3] developed by Wagelaar et al. is introduced. The general ATL

was presented in detail above, and due to the fact only the VM being replaced, only the

changes and benefits of EMFTVM are presented. In contrast to the regular VM, where the

byte-code is stored as XML format, EMFTVM uses EMF models for higher performance

as shown in Figure 2.8. Further, helpers can make use of recursive calls, allowing for more

complex implementations. Rules may associate with super rules or even are defined as

abstract.

All in all, EMFTVM brings more functionality to model transformations and enhances

performance dramatically when using in-place refinement mode.

EMFTVM is further discussed within Chapter 4.

Chapter 2. MDE Technologies 14

Figure 2.8: EcoreCopy Performance. [3]

2.3 OCL

The OCL, mostly used for checking consistency rules of models, excels for declarative and

navigational purposes. It was developed at IBM and accepted as UML standard in the

past. It conforms to any MOF metamodel. As the syntax for the OCL is more or less

equal to the ATL, or because of the fact that the declarative ATL is derived from the OCL,

the syntax is not introduced again. Nonetheless, a complete language documentation with

examples can be found in [7].

For the practical work, the OCL is used alongside the ATL transformation, where specific

scenarios are partially fixed during transformation. For each scenario, constraints expressed

in the OCL are then generated and validated with the help of Xtext OCL console (see

Section 4.2).

Chapter 3

Motivating Example

To illustrate ATL transformations in form of a practical usage scenario, let us look at an

example UML model transformation. For this purpose, a simple UML model shown in

Figure 3.1 will serve as input model. The original model should be transformed to its

corresponding class diagram. The direction, when transforming UML diagrams as a whole

is important. One can notice that in the direction, with the sequence diagram being the

input model, enough information is provided to create the class diagram respectively. In

contrast, when trying to conduct a more complex transformation such as transforming a

class to sequence diagram, it very well be nearly impossible. Indeed there is a reason why

such diagrams are grouped as interaction or structural diagrams, since different diagrams

provide a different focus on information presented. In fact, a class diagram does not contain

any other information except messages, lifelines and the connectivity of lifelines through

messages. In other words: messages represent operations, lifelines classes and associations

give information about receiver and sender lifelines. But at the bottom line, no information

on timely order is given. Thus multiple messages between lifelines would not make any

sense at all, as we are not able to bring them in an order.

Having described the reason for the forthcoming transformation, we will directly step into

code snippets, the first presented in Listing 3.1. As mentioned, we have to build associations

in order to conform to the messages lifeline connections. With the help of additional helpers

shown in Listing 3.2 and Listing 3.3, both the sender and receiver lifeline are provided.

The last part of the helper getAssociations will then append all lifeline pairs for all

messages within the input model.

15

Chapter 3. Motivating Example 16

Figure 3.1: Light Switch UML Model.

1 helper def: getAssociations(): Sequence(OclAny) =
2 let rcv: OclAny =
3 thisModule.getReceiveLifelines() in
4 let snd: OclAny =
5 thisModule.getSendLifelines() in
6 rcv -> iterate(i; assSeq: Sequence(UML2!"uml::Lifeline") = Sequence

{} |
7 assSeq.append(Sequence{i, snd -> at(assSeq.size() + 1)}));

Listing 3.1: ATL Helper: getAssociations.

1 helper def: getReceiveLifelines(): Sequence(UML2!"uml::Lifeline") =
2 thisModule.getMessages() -> collect(re | re.receiveEvent.covered).first

();

Listing 3.2: ATL Helper: getReceiveLifelines.

1 helper def: getSendLifelines(): Sequence(UML2!"uml::Lifeline") =
2 thisModule.getMessages() -> collect(se | se.sendEvent.covered).first();

Listing 3.3: ATL Helper: getSendLifelines.

For the main transformation behavior, the matched rule Model shown in Listing 3.4,

as it is called, matches its input pattern of type UML2!"uml::Model" within the from

section. The rule then optionally assigns new values to its attributes in the to section.

Additionally, the main elements of the class diagram are appended to the UML element

packagedElement as a sequence of types: lifeline, constraint, association and class.

1 rule Model {
2 from
3 s: UML2!"uml::Model"

Chapter 3. Motivating Example 17

4 to
5 t: UML2!"uml::Model" (
6 name <- s.name,
7 ownedRule <- s.ownedRule,
8 packagedElement <- thisModule.getLifelines() -> union(thisModule.
9 getConstraints()) -> union(thisModule.getAssociations() ->

10 iterate(iter; a: Sequence(UML2!"uml::Association") = Sequence{} |
a.

11 append(thisModule.Association(iter.at(1), iter.at(2)))))
12)
13 }

Listing 3.4: ATL Rule: Model.

In the last line of Listing 3.4, thisModule.Association(...) is called as a unique

lazy rule, which is executed and always returns the same target element for a given source

element [2]. Listing 3.5 processes the lifeline pairs produced by the helper discussed ear-

lier. For each lifeline pair, an association is generated in the to section of the rule. In

addition to the name assignment, the ownedEnd attribute of the association is set for the

corresponding class as well. In the do section, the target pattern t with type association

is returned analogous to a normal return value in Java.

1 unique lazy rule Association {
2 from rcv: UML2!"uml::Lifeline", snd: UML2!"uml::Lifeline"
3 to
4 t: UML2!"uml::Association" (
5 name <- rcv.name + ’_’ + snd.name,
6 -- memberEnd <-
7 ownedEnd <- Sequence{thisModule.AssociationOwnedEnd(rcv, snd)}
8)
9 do {

10 t; -- return generated association
11 }
12 }

Listing 3.5: ATL Rule: Association.

In order to transform lifelines to classes, Listing 3.6 shows the source code for this particular

behavior. At first, simple attributes are applied as they are set for the lifeline. In the end,

the ownedAttribute for the possible association is added.

1 rule Lifeline2Class {
2 from
3 s: UML2!"uml::Lifeline"
4 to
5 t: UML2!"uml::Class" (s
6 name <- s.name,
7 visibility <- s.visibility,
8 eAnnotations <- s.eAnnotations,
9 ownedComment <- s.ownedComment,

10 clientDependency <- s.clientDependency,
11 nameExpression <- s.nameExpression,
12 ownedOperation <- thisModule.getMessages(),
13 ownedAttribute <- let assList: Sequence(OclAny) =
14 thisModule.getAssociations()
15 in
16 if assList -> isEmpty() then
17 Sequence {}

Chapter 3. Motivating Example 18

18 else
19 let a: Sequence(OclAny) =
20 assList -> select(a | if a -> at(1) = s then
21 true
22 else
23 false
24 endif)
25 in
26 if a -> isEmpty() then
27 Sequence {}
28 else
29 Sequence {}.append(thisModule.
30 ClassOwnedAttributeAssociation(a -> flatten() ->
31 at(1), a -> flatten() -> at(2)))
32 endif
33 endif
34)
35 }

Listing 3.6: ATL Rule: Lifeline2Class.

More details of the transformation module can be looked up in Appendix A.1. As the most

important rules are declared by now, we will take a look at Figure 3.2 representing the

input model on the left and the output model on the right respectively. The generated

classes represent the former lifelines. Messages were transformed to operations and are

owned by its receiver lifeline represented by a class. The constraint was copied through a

normal matched rule, applying the input attributes to the output ones. Concluding with

the class association element which was generated due to a message connecting the lifelines

Light and Switch.

Figure 3.2: Light Switch UML Model - Sequence to Class Transformation.

This chapter demonstrated a model-to-model transformation example. For the main part of

this thesis we will focus on constraint-driven scenario transformations in the next chapter.

Chapter 4

Implementation and Discussion

As this thesis’ major focus lies on the implementation of ATL transformations and OCL

constraint generation, this chapter will document 9 selected scenarios in detail. We will

not only take a look onto the formal specifications, but also discuss implementation design

choices for each scenario within the documentation. In order to overcome the complexity

of the UML metamodel, some restrictions to the semantics of UML models had to be made

during development. These limitations indeed affect the variety of the used UML models,

however, adaptions to support a wider diversity could be done easily and therefore are

referenced as future work. Nevertheless, the most interesting and non-trivial constraint-

driven scenarios were chosen to showcase the capabilities of the ATL and OCL when

checking and fixing (in)consistencies in UML models. In the first section we will go through

each of the nine scenarios and conclude the documentation in the second section with the

usage documentation of the proposed framework.

4.1 Constraint-driven Scenarios

In the paragraph above, the complex nature of UML models were mentioned as it leads to

an indefinite number of consistency scenarios. Besides being standardized, the UML has

to be checked for its syntactic as well as semantic consistency. There is a clear difference

between the usual validation of UML models based on syntactic validation (e.g. in Papyrus

via the Validate command) and the more specific check, whether the class diagram conforms

to its sequence diagram and/or statemachine. In the latter case, we will from here on refer

as semantic validation. Many researchers have been working on this subject before, e.g.

19

Chapter 4. Implementation and Discussion 20

in [17], Egyed and Reder created an instant and incremental consistency management

framework called Model/Analyzer. A catalogue containing a wide variety of design rules

for UML models, on which the framework operates upon, is available on the institute

website 1. Basically, this rule set provided a general starting point for the formalization of

basic consistency rules used in this thesis.

Obviously, each of the forthcoming scenarios depend on the formal definition (denoted as

Formalization and written in Prosa) of such design rules and/or similar but mostly more

complex ones. In context of the Transformation, the formalization has to be rewritten in

the ATL. Based on ATL rules it is then decided, whether potential inconsistencies occur

and further must be fixed during the transformation process. One easily can imply, that

the Validation for the corresponding OCL expression is necessary too. As the ATL is built

upon the OCL, the validation is relatively straight forward, given the OCL expression for

its scenario is defined. The outcome for each of the transformation scenarios will cover

constraints in form of OCL expressions and the action on the UML model itself, but only

if a constraint was violated. The reason for not fixing certain constraint violations depends

on the fact that ambiguous scenarios produce non-deterministic choices where the trans-

formation itself can not be automated anymore. Hence user input would be needed. As all

possible fixing scenarios would lead beyond the required effort for this thesis, it is refered as

future work. Due to the used EMFTVM supporting in-place transformations, incremental

behavior is still applied. In fact, only the model delta, triggered by the transformation

rules, is saved on the same model again. Untouched elements are not copied. [3]

The UML models under test were introduced in Section 2.1 already and in case of changes

- only for demonstration purposes - will be shown again when necessary. For the readers

convenience, the UML abbreviation for any UML element is omitted in the scenario sections

when not necessary. In general, when talking about rules, helpers, source/target patterns,

from, using, to and do sections, the ATL abbreviation is omitted as well. Although a

general introduction to ATL as well as a brief transformation example were given in the

sections before, the forthcoming ATL transformations are far more complex and may not

be that easy to understand in the first place. Hence the first scenario will be explained

and documented in much more detail than the following ones.

1Online at: http://www.jku.at/sea/content/e139529/e126342/e126449/.

http://www.jku.at/sea/content/e139529/e126342/e126449/

Chapter 4. Implementation and Discussion 21

4.1.1 Message - Operation

For the first scenario and as the heading of this subsection states, we will investigate the

relationship between messages (occurring in the UML sequence diagram) and their corre-

sponding operations (occurring in the UML class diagram). In [23], Demuth et al. pointed

out some preliminary considerations: when a message does not have its operation repre-

sented and the owner class is part of an inheritance hierarchy with at least one superclass,

it can not be determined to which class in the inheritance hierarchy the operation should

be added. For this scenario we refer to Figure 2.1, where A is a subclass of C, messages x

and z enforce operations x() and z() inside the inheritance hierarchy. The inheritance

hierarchy starts with class A and ends at its topmost superclass C. Now that we have

described the situation, a formal and general statement can be formalized. To avoid any

misinterpretations, the formalization statement below is identical to the name and poten-

tial comments in the implementation. The source code can be looked up in Appendix

A.2.

Formalization

For each message, its corresponding operation must exist inside the class inheritance hier-

archy.

Transformation

We already have learned about the ATL in Section 2.2 and seen a typical ATL transfor-

mation example in Chapter 3. Hence, we can spare the basics and immediately focus on

the implementation as well as design choices for this particular scenario.

In order to perform the desired transformation for the formalization above, the rule must

be in the right context. For a matched rule, the very starting point of the transformation

begins with the source pattern. Without any doubt, this should be the message, as it makes

sense to build the OCL expression for the message context. But the issue with this approach

is that an OCL expression is not permitted to be attached to any message w.r.t. the UML

metamodel. A simple bypass for this problem can be implemented as follows: Change the

rule context to the class and add helpers to get all messages for the corresponding lifeline.

Listing 4.1 and Listing 4.2 both show the helpers, where the getMessagesByClass

selects all messages for a given class. Another helper getReceiverLifelineClass is

called to retrieve the class for each message which is then matched to the given class in

Chapter 4. Implementation and Discussion 22

context.

1 helper def: getReceiverLifelineClass(m: UML2!Message): UML2!Class =
2 UML2!Lifeline.allInstancesFrom(’INOUT’) -> select(l | l.coveredBy ->

select(i | i.
3 oclIsTypeOf(UML2!MessageOccurrenceSpecification)) -> exists(e | e =

m.
4 receiveEvent)) -> first().represents.type;

Listing 4.1: ATL Helper: getReceiverLifelineClass.

1 helper def: getMessagesByClass(cl: UML2!Class): Sequence(UML2!Message) =
2 UML2!Message.allInstancesFrom(’INOUT’) -> select(m | thisModule.
3 getReceiverLifelineClass(m) = cl);

Listing 4.2: ATL Helper: getMessagesByClass.

Each message will then be processed in a set containing all messages for the lifeline repre-

sented by the class in context. On the one hand, this design choice facilitates the handling

of multiple constraint violations via concatenation of all message-related OCL expressions.

On the other hand, the broader context of the class might rise the complexity of naviga-

tional statements inside OCL expressions. But for this scenario, it is of no concern since

messages can be retrieved via helpers and then have their names hardcoded within the

OCL expression.

Besides retrieving the right set of UML elements via helpers, the main part of the trans-

formation is carried through the matched rule (Listing 4.3 - 4.6). The source pattern is

implemented as from section and corresponds to the rules context with an optional condi-

tional guard statement s.oclIsTypeOf(UML2!Class). In fact, this condition denotes

the rule as matched rule, because only elements of type class will match. Without the

guard condition, e.g. UML elements of type UML statemachine also would be considered

and therefore result in undefined behavior.

1 rule Class {
2 from
3 s: UML2!Class (
4 s.oclIsTypeOf(UML2!Class)
5)

Listing 4.3: ATL Rule: from Section.

The using section mainly covers simple variable definitions, but more importantly, the

declarative expression, where the helpers are called. We already retrieved all messages and

further compare those messages with all owned operations for the current class in context.

In the formalization section, we exactly defined this scenario, which is either satisfied, when

Chapter 4. Implementation and Discussion 23

the set of operations is empty, or violated when the set of operations is not empty.

1 using {
2 c01Name: String = ’For the class \’’ + s.name + ’\’, each message must

be’ + ’’
3 + ’ represented by an operation and inside the corresponding class’

+ ’’
4 + ’ hierarchy.’;
5 c01Expr: String = OclUndefined;
6 c01Elements: Sequence(UML2!Message) = OclUndefined;
7 newOps: Sequence(UML2!Message) = thisModule.getMessagesByClass(s) ->
8 debug(’ConcurrentModificationException Fix’) -> select(m | not s.
9 ownedOperation -> exists(o | o.name = m.name));

10 }

Listing 4.4: ATL Rule: using Section.

In the to section, nothing should happen since the class in context should not be altered

every time the matched rule is executed. The imperative do section will take care of this

behavior.

1 to
2 t: UML2!Class (
3 -- keep class properties
4)

Listing 4.5: ATL Rule: to Section.

Finally, as the do section provides imperative behavior, actions based on the set of opera-

tions can be specified. In Listing 4.6, an enclosing for loop embodies the set of operations.

For each operation, the called rule NewOperation generated as a new operation instance

in Listing 4.7. The returned operation is then appended either to its owner, which is

the UML model as its whole when there is at least one superclass, or to the class in

context, when no generalization exists at all. In the former case, a comment is added to

the operation in order to signal the non-deterministic decision due to multiple potential

owner classes.

Still, the OCL expression has to be built for all new operations. Beginning at line 24,

every message of the class in context is concatenated with its name and compared to the

corresponding operation name.

1 do {
2 -- add missing operations
3 for (m in newOps) {
4 -- when there is no super class, add operation to class
5 if (not s.allOwnedElements() -> exists(g | g.
6 oclIsTypeOf(UML2!Generalization))) {
7 thisModule.NewOperation(m.name, ’’, s);
8 }
9 -- otherwise add operation to model, in case it does not exist yet

10 else if (UML2!Operation -> allInstancesFrom(’INOUT’) -> select(o |

Chapter 4. Implementation and Discussion 24

o.
11 owner = OclUndefined and o.ownedComment -> exists(oc | oc.body =
12 c01Name)) -> isEmpty()) {
13 thisModule.NewOperation(m.name, c01Name, OclUndefined);
14 }
15 } -- get all messages for constraint expression
16 c01Elements <- thisModule.getMessagesByClass(s);
17

18 -- for each operation, build constraint
19 if (c01Elements -> size() > 0) {
20 c01Expr <- ’self.inheritedMember->select(oclIsTypeOf(Operation))->

union(self.ownedOperation)->exists(name=\’’ + c01Elements.first()
.

21 name + ’\’)’;
22

23 c01Elements <- c01Elements -> subSequence(2, c01Elements -> size());
24 for (o in c01Elements) {
25 c01Expr <- c01Expr.concat(’ and self.’ +
26 ’inheritedMember->select(oclIsTypeOf(Operation))->union(self.

ownedOperation)->exists(name=\’’ + o.name + ’\’)’);
27 } -- add constraint to class
28 if (not s.allOwnedElements() -> select(c | c.
29 oclIsTypeOf(UML2!Constraint)) -> exists(c | c.name = c01Name) and
30 s.oclIsTypeOf(UML2!Class)) {
31 thisModule.NewOwnedRule(s, c01Name, c01Expr, ’OCL’);
32 }
33 }
34 }

Listing 4.6: ATL Rule: do Section.

1 -- new operation constructor alternative
2 rule NewOperation (oStr: String, cStr: String, owner: OclAny){
3 using {
4 o: UML2!Operation = UML2!Operation.newInstanceIn(’INOUT’);
5 c: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);
6 }
7 do{
8 c.body <- cStr;
9 o.name <- oStr -> debug(’ADD operation’);

10 if (owner <> OclUndefined) o.class <- owner;
11 o; -- return operation
12 }
13 }

Listing 4.7: ATL Called Rule: NewOperation.

The OCL expression is the second new instance which should be generated within the

transformation. With respect to the UML metamodel, a constraint with the concatenated

OCL expression enclosed as opaque expression is generated in Listing 4.8. The returned

constraint is then appended to its owner, which is represented by the class in context.

1 -- new constraint constructor alternative
2 rule NewOwnedRule (owner: UML2!Element, ruleName: String, exp: String, l:

String) {
3 using {
4 c: UML2!Constraint = UML2!Constraint.newInstanceIn(’INOUT’);
5 oe: UML2!OpaqueExpression = UML2!OpaqueExpression.newInstanceIn(’INOUT

’);
6 }
7 do {
8 oe.language <- oe.language -> append(l);
9 oe.body <- oe.body -> append(exp);

10 c.name <- ruleName -> debug(’ADD ownedRule’);
11 c.constrainedElement <- c.constrainedElement -> append(owner);

Chapter 4. Implementation and Discussion 25

12 c.specification <- oe;
13 owner.ownedRule <- owner.ownedRule -> append(c);
14 c; -- return constraint
15 }
16 }

Listing 4.8: ATL Called Rule: NewOwnedRule.

When the transformation is performed onto the UML Inheritance model (Figure 2.1), the

console output lists the new instances generated as shown in Listing 4.9. One can observe,

the two messages x and z were added to the UML model. For both a comment signals the

absence of UML ownership, because the owner class is in fact a subclass.

ADD operation: ’x’
ADD operation: ’z’
ADD ownedRule: ’For the class ’A’, each message must be represented by an

operation and inside the corresponding class hierarchy.’
TEST: model transformation successful ...

Listing 4.9: Transformation Console Output: Message - Operation.

The transformed model shows both new operations appended outside the scope of the

actual UML model (as seen in the XML representation in Listing 4.10).

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="20110701" xmlns:xmi="http://www.omg.org/spec/XMI

/20110701" xmlns:uml="http://www.eclipse.org/uml2/4.0.0/UML">
<uml:Model xmi:id="_OREfYOewEeKJ0egLp7Bx_w" name="model">
...
</uml:Model>
<uml:Operation xmi:id="_zLCOIPkyEeK3noywWhB5XA" name="x"/>
<uml:Comment xmi:id="_zLCOIfkyEeK3noywWhB5XA">
<body>For the class ’A’, each message must be represented by an

operation and inside the corresponding class hierarchy.</body>
</uml:Comment>
<uml:Operation xmi:id="_zLIUwPkyEeK3noywWhB5XA" name="z"/>
<uml:Comment xmi:id="_zLIUwfkyEeK3noywWhB5XA">
<body>For the class ’A’, each message must be represented by an

operation and inside the corresponding class hierarchy.</body>
</uml:Comment>

</xmi:XMI>

Listing 4.10: XML Output Model: Message - Operation.

Validation

Concerning the OCL expression generated, this small section will show the correct outcome

of both the transformation and the OCL validation. Before the actual validation is done,

we will take a brief look onto the generated OCL expression in Listing 4.11. Similar to

the matched rule in the transformation section, the OCL expression does need its context

specified as well. Identical to the transformation, the context is UML class. For each class,

which is represented by the keyword self, all operations have to exist for its message

representations. Stated with the union keyword, an operation is either inherited or owned

Chapter 4. Implementation and Discussion 26

by the class itself.

self.inheritedMember->select(oclIsTypeOf(Operation))->union(self.
ownedOperation)->exists(name=’x’) and self.inheritedMember->select(
oclIsTypeOf(Operation))->union(self.ownedOperation)->exists(name=’z’)

Listing 4.11: OCL Expression: Message - Operation.

For the purpose of validation, the UML Model Editor OCL Console (Eclipse plug-in) is

used. The left model of Figure 4.1 first demonstrates the absence of both operations. The

validation for the right model returns false, which means the constraint is not satisfied.

Both operations are not in the context of class A (Listing 4.12).

Figure 4.1: Inheritance UML Model Editor Validation.

Evaluating:
self.inheritedMember->select(oclIsTypeOf(Operation))->union(self.

ownedOperation)->exists(name=’x’) and self.inheritedMember->select(
oclIsTypeOf(Operation))->union(self.ownedOperation)->exists(name=’z’)

Results:
false

Listing 4.12: OCL Validation : Message - Operation.

Since the output model could not satisfy the constraint, another test case is conducted

using the Light Switch UML Model shown in Figure 2.2. This model does not contain any

generalizations, hence the missing activate() operation should be added to its owner

class Light correctly. Doing so, the OCL expression evaluates to true. Again, the left

side represents the input model which is then transformed to its right representation, the

output model.

Just a quick reminder, when talking of in- and output models: in fact, there is only one

’INOUT’ model, as the input model is simply transformed during refining mode. For

Chapter 4. Implementation and Discussion 27

Figure 4.2: Light Switch UML Model Editor Validation.

testing purposes and to preserve the input models in its initial state, the output model is

saved as another file. In Listing 4.13 one can observe the evaluation was actually successful,

because activate was added to class Light.

Evaluating:
self.inheritedMember->select(oclIsTypeOf(Operation))->union(self.

ownedOperation)->exists(name=’activate’) and self.inheritedMember->
select(oclIsTypeOf(Operation))->union(self.ownedOperation)->exists(
name=’deactivate’)

Results:
true

Listing 4.13: OCL Validation: Message - Operation.

4.1.2 Lifeline - Class

This scenario covers the lifeline - class connection. Based on the UML navigation

represents.type, each lifeline is linked to its type via the lifeline instance property

and then again via the property type, which designates the class in the class diagram.

In other words, a property in the sequence diagram connects both lifeline and class. In

general, a sequence diagram provides a subset of the information of the corresponding

class diagram. Hence it is indeed possible that lifelines are missing, or even further: no

sequence diagram exists at all. The other way around, it is assumed: for each lifeline, the

corresponding class exists. But the property and the corresponding class of the lifeline may

or may not exist. This leads to another issue, where the lifeline name must start with a

capital letter. In case of violation, the first character will be capitalized automatically so

that the lifeline property can be defined with the lowercase version of the name.

As this scenario does not require a specific UML model at all, an arbitrary model, e.g.

Inheritance UML model (Figure 2.1) is chosen for validation. In order to provide a mean-

Chapter 4. Implementation and Discussion 28

ingful test case, an additional lifeline with a unique name is added manually. The detailed

implementation can be looked up in Appendix A.3.

Formalization

For each lifeline, a corresponding class must exist.

Transformation

On the contrast to the first scenario, where a class may own multiple operations, a lifeline

is always connected to exactly one class and denoted as one-to-one relationship according

to the UML metamodel. Based on this fact, we had to change the context of the rule class,

whereas in this scenario, we always will retrieve exactly one or no class at all. This comes

quite handy when appending OCL expressions for the lifeline. The OCL expression is

therefore appended to the class representing the existing or newly created lifeline. For this

reason, the context for the ATL rule can remain as lifeline and the generated constraint

is appended to the lifeline class. We already have mentioned the link between a lifeline

and its class representation. In Listing 4.14, three different cases are distinguished. Both

properties through has to be checked and in return only the class for the full link can be

evaluated.

1 helper def: getLifelineClass(l: UML2!Lifeline): UML2!Class =
2 if (l.represents = OclUndefined) then
3 OclUndefined
4 else
5 if (l.represents.type = OclUndefined) then
6 OclUndefined
7 else
8 l.represents.type
9 endif

10 endif;

Listing 4.14: ATL Helper: getLifelineClass.

The matched rule’s from section is guarded with its UML type, in this case, the lifeline. In

the using section, a simple initial capitalization for the lifeline naming convention (capital

first letter) is expressed in the declarative statement shown in Listing 4.15. It simply

capitalizes the first letter and concatenates the rest of the name starting at character two.

The new string is then assigned in the to section of the transformation by assigning the

new string to the target pattern attribute name.

1 validLlName: String = s.name.at(1) -> toUpper() + s.name.substring(2);

Listing 4.15: ATL Expression: toUpper.

Chapter 4. Implementation and Discussion 29

The actual behavior of the transformation is described in the do section. In fact, depending

on the helpers’ return value, a class may or may not exist. In the former case, only the

constraint is generated and appended to the lifeline class. For the latter, it must be

distinguished, whether the class exists but is not linked to the lifeline, or the class is just

missing. And this brings us to the last possibility that the connective property between

lifeline and class might not exist. If so, a new property instance is generated as well.

Called rules for the UML element instance generation - for a class, property and constraint

- are similar to the ones in the scenario before and will not be listed again. We rather will

take a look at the console output shown in Listing 4.16. For this particular test case, an

arbitrary lifeline without any property was added to the sequence diagram (Figure 4.3). As

a result, a property as well as the class were generated. Each lifeline class is then extended

with its corresponding constraint.

ADD ownedRule: ’For each lifeline, a corresponding class must exist.’
ADD ownedRule: ’For each lifeline, a corresponding class must exist.’
ADD class: d391410:UML2!Class
ADD property: 704a8a11:UML2!Property
ADD ownedRule: ’For each lifeline, a corresponding class must exist.’
TEST: model transformation successful ...

Listing 4.16: Transformation Console Output: Lifeline - Class.

(a) Class Diagram. (b) Sequence Diagram.

Figure 4.3: Inheritance UML Model Example.

Validation

In Listing 4.17 the OCL expression is triggered for the lifeline class in context. In particular,

Z is selected out of all lifelines. For the single lifeline, the property as well as the type

Chapter 4. Implementation and Discussion 30

(which corresponds to class Z) must not be undefined.

Lifeline.allInstances()->select(name = ’Z’).represents.type->notEmpty()

Listing 4.17: OCL Expression: Lifeline - Class.

Figure 4.4 shows the compared models before (left) and after the transformation executed

(right). Validating the constraint for class Z results in true (shown in Listing 4.18), since

the property z and its class Z were generated and added to the model on the right.

Figure 4.4: Inheritance UML Model Editor Validation.

Evaluating:
Lifeline.allInstances()->select(name = ’Z’).represents.type->notEmpty()
Results:
true

Listing 4.18: OCL Validation: Message - Operation.

4.1.3 Transition - Operation

Just like the first scenario, where each message is represented by its operation, each transi-

tion in a statemachine must be represented by its operation too. As the owner of statema-

chine must be of type class, the class is chosen for the UML element in context consid-

ering the transformation rule, OCL expression and constraint generation. Additionally, a

Chapter 4. Implementation and Discussion 31

statemachine is a subset of the class diagram (analogous to the sequence diagram). That

is why the given scenario must not be fulfilled in the opposite way. Indeed, one has the

freedom to further constrain and adapt the UML metamodel, however for the purpose of

the transformation demonstration, we omit this.

This scenario does require a new UML model under test which at least contains one

statemachine. Since the VOD UML model (Figure 2.3) does not violate the constraint

described, the VOD AR UML model (Figure 2.4 and Figure 2.5) is chosen for validation.

The complete implementation can be looked up in Appendix A.4.

Formalization

For each transition, a corresponding operation must exist.

Transformation

Due the rule in context being of type class, a helper comes in handy to provide every

transition for a class. In Listing 4.19, such helper matches all transitions to their owner.

More precisely, three owner attributes are navigated starting at transition attribute: the

first representing the region element, the second the ownedBehavior and the third the

class itself. The OCL expression listed later in this section, obviously will be built from all

transitions and appended to the class.

1 helper def: getTransitionsByClass(cl: UML2!Class): Sequence(UML2!
Transitions) =

2 UML2!Transition.allInstancesFrom(’INOUT’) -> select(t | t.owner.owner.
owner = cl);

Listing 4.19: ATL Helper: getTransitionsByClass.

With the required helpers implemented, we will then filter the missing transitions by a

given class. Therefore we will make use of getTransitionsByClass, as shown above,

and select the transitions not having its operations defined.

1 newOps: Sequence(UML2!Transition) = thisModule.getTransitionsByClass(s)
-> select(tr | not s.ownedOperation -> exists(o | o.name = tr.name));

Listing 4.20: ATL Expression: newOps.

The main matched rule is analogous to the Message - Operation Scenario in Subection 4.1.1

and for that reason not listed anymore. The same applies to the called rules for generating

the operations and comments. In this scenario, the statemachine does own a transition

which the owning class has not specified. Hence the console output in Listing 4.21 shows

Chapter 4. Implementation and Discussion 32

the fix as expected: the operation init() is added to class Streamer directly. Again,

the class generalization attribute is checked whether an inheritance hierarchy exists or not.

As Streamer is not a subclass, the fix can be carried out.

ADD operation: ’init’
ADD ownedRule: ’For each transition, a corresponding operation must exist

.’
TEST: model transformation successful ...

Listing 4.21: Transformation Console Output: Transition - Operation.

Before the validation, we want to discuss the choice for class as context. In later scenarios,

constraints are appended to statemachines, because statemachines do permit constraint

ownership just like a class.

If we would choose the statemachine as context, multiple statemachines owned by the same

class would produce multiple constraints. Therefore, multiple OCL interpretations would

potentially prolong the validation. However, for small models under test it would not make

any reasonable difference in performance at all.

Validation

The generated OCL expression combines inherited operations as well as the operations

owned by the class. The set of all occurring transitions will then be matched to the output

model on the right hand side of Figure 4.5. As init() was added through the process of the

transformation, the constraint is fulfilled (Listing 4.22).

Evaluating:
self.inheritedMember->select(oclIsTypeOf(Operation))->union(self.

ownedOperation)->exists(name=’stream’) and self.inheritedMember->
select(oclIsTypeOf(Operation))->union(self.ownedOperation)->exists(
name=’wait’) and self.inheritedMember->select(oclIsTypeOf(Operation))
->union(self.ownedOperation)->exists(name=’stream’) and self.
inheritedMember->select(oclIsTypeOf(Operation))->union(self.
ownedOperation)->exists(name=’wait’) and self.inheritedMember->select
(oclIsTypeOf(Operation))->union(self.ownedOperation)->exists(name=’
connect’) and self.inheritedMember->select(oclIsTypeOf(Operation))->
union(self.ownedOperation)->exists(name=’init’) and self.
inheritedMember->select(oclIsTypeOf(Operation))->union(self.
ownedOperation)->exists(name=’wait’) and self.inheritedMember->select
(oclIsTypeOf(Operation))->union(self.ownedOperation)->exists(name=’
stream’) and self.inheritedMember->select(oclIsTypeOf(Operation))->
union(self.ownedOperation)->exists(name=’connect’)

Results:
true

Listing 4.22: OCL Validation: Transition - Operation.

The unification of inheritedMember and ownedOperation does look rather complex

and one might wonder why there is no combined statement for retrieving all operations in

Chapter 4. Implementation and Discussion 33

Figure 4.5: VOD AR UML Model Editor Validation.

an inheritance hierarchy. Actually, UML would support the desire of having one function

retrieving both at the same time via the function ’class’.getAllOperations().

But neither the Xtext OCL interpretation console nor the OCL validation functionality of

Papyrus does support the interpretation yet. Hence, the longer version of the expression

is used.

4.1.4 Message Sequence - Transition Sequence

Having discussed three standard scenarios, this one aims at the more unusual characteris-

tics of UML models. In the past sections we stated that the sequence diagram as well as

the statemachine describe a subset of the information of the class diagram. Nevertheless,

messages and transitions share some aspects regarding the class diagram representation.

Both elements must be represented as operation and generally speaking share the same

execution behavior. A very important characteristic of sequence diagrams and statema-

chines is the fact that they describe operations in a timed order. Whereas the sequence

diagram presents interactions between the lifeline classes, the statemachine does this in

an analogous way but is restricted to a class. Since sequence diagrams having the classes

represented by lifelines, we can compare the order of messages to a possible path in the

statemachine. The lifeline and the statemachine both are owned by a class, thus the class is

Chapter 4. Implementation and Discussion 34

chosen for the context. This does represent the Least Common Multiple (LCM) for lifeline

and statemachine.

Due to a class owning multiple sequence diagrams and statemachines, some restrictions

were made during development. Only one sequence diagram for the UML model is allowed,

but still multiple statemachines per class are considered. The UML model under test will

be the VOD AR model (Figure 2.4 and Figure 2.5), as it owns a sequence diagram and

two different statemachines for class Streamer. The full implementation is available at

Appendix A.5.

Formalization

Sequence of messages must match sequence of transitions.

Transformation

We discussed the transformation context in the paragraph above. The class in context is

applied for constraint attachment as well as the OCL expression. Following the structure

of former scenarios, helpers are introduced first:

Thus, the context being class, messages and transitions are navigated via the helpers below.

Those were mentioned earlier and as a result will not be listed once more.

• getMessagesByClass

• getReceiverLifelineClass

• getTransitionByClass

A more interesting helper is shown in Listing 4.23. Given the fact that messages are or-

dered already but transitions are not, the possible transition paths through its model

have to be extracted and saved as an OCL collection type. For each statemachine,

reorderTransitions starts with the initial pseudostate and recursively walks through

all possible paths (using the iterate function) analogous to a Depth-First Search (DFS)

algorithm. Since the later traversal which is needed for validation might abort in the

middle of a transition path, another path could still fulfill the correct message order and

that is why the DFS is needed. The returning sequence of transitions then represents the

reordered list of transitions starting at the pseudostate and ending if a state was already

reached through any transition.

Chapter 4. Implementation and Discussion 35

1 helper def: reorderTransitions(st: UML2!Vertex, sm: UML2!StateMachine, l:
2 Sequence(UML2!Transition), visited: Sequence(UML2!Vertex)):
3 Sequence(UML2!Transition) =
4 if visited -> exists(e | e = st) then
5 l -> append(UML2!Transition.allInstancesFrom(’INOUT’) -> select(t2 |

t2.owner.
6 owner = sm and t2.source = st))
7 else
8 -- append transition to list and recursively call function for target

state
9 UML2!Transition.allInstancesFrom(’INOUT’) -> select(t1 | t1.owner.

owner = sm and
10 t1.source = st) -- for each source
11 -> iterate(i; init: OclAny = OclUndefined | -- call recursively
12 thisModule.reorderTransitions(i.target, sm, (l -> append(UML2!

Transition.
13 allInstancesFrom(’INOUT’) -> select(t2 | t2.owner.owner = sm and

t2.
14 source = st))), visited -> append(i.source)))
15 endif;

Listing 4.23: ATL Helper: reorderTransitions.

As messages and transitions both are in the correct order - messages are ordered already

w.r.t. to the sequence diagram encapsulated in the UML model, the sequence of messages

for a specific lifeline are traversed in listing 4.24. Each message is accessed by its order

index i, for which the corresponding transition is looked up in a sequence of transitions

without gaps (cyclic paths are possible though). Given the current state (represented by

the UML element called vertex) of the traversal, the current message name has to exist

in the subset of transitions. We call it a subset of transitions, because for each state

multiple transitions might be possible. This is analogous to the graph built according

to DFS characteristics. Normally, if no transition conforms to the current message, the

constraint is violated. Additionally, a successful match of both sequences is specified so

that the sequence of transitions might be a subset of the messages respectively. Therefore,

as we will see in the later validation, it is possible that the matching sequence begins with

the first message but not necessarily with the first outgoing transition of the pseudostate

in the statemachine. Further, the matched sequence must be present in all statemachine

instances for the UML models class. The helper either returns 0 if the constraint is satisfied

and the position of the current message if violated.

1 helper def: traverse(st: UML2!Vertex, i: Integer, t: Sequence(UML2!
Transition), msgs:

2 Sequence(UML2!Messages), tnsns: Sequence(UML2!Transition)): Integer =
3 if msgs.at(i) = msgs -> last() and t -> exists(tr | tr.name = msgs.at(i

).name) then
4 0
5 else
6 if not t -> exists(tr | tr.name = msgs.at(i).name) then
7 if t = tnsns -> at(1) then
8 thisModule.traverse(t -> select(tr | tr.source = st) -> at(1).

target, i,
9 tnsns -> select(tri | t -> select(tr | tr.source = st) -> at(1).

Chapter 4. Implementation and Discussion 36

10 target = tri -> at(1).source) -> flatten(), msgs, tnsns)
11 else
12 i
13 endif
14 else
15 thisModule.traverse(t -> select(tr | tr.name = msgs.at(i).name) ->

at(1).
16 target, (i + 1), tnsns -> select(tri | tri -> exists(e | e.source

=
17 (t -> select(tr | tr.name = msgs.at(i).name) -> at(1).target)))

->
18 flatten(), msgs, tnsns)
19 endif
20 endif;

Listing 4.24: ATL Helper: traverse.

Both recursive helpers might be tricky to understand in the first place, hence it is encour-

aged to look at the whole implementation in the appendix. A transformation executed

onto the VOD AR UML model produces the following output shown in Listing 4.25. As

the OCL expression for this scenario exceeds any expectations of this thesis, it is omitted.

So for each statemachine, the informal constraint is added in Prosa.

ADD ownedRule: ’Sequence of messages must match sequence of transitions.’
ADD ownedRule: ’Sequence of messages must match sequence of transitions.’
CONSTRAINT VIOLATED: 82d195a:UML2!Comment
TEST: model transformation successful ...

Listing 4.25: Transformation Console Output: Message Sequence - Transition
Sequence.

Validation

Listing 4.26 shows the XML snippet and Figure 4.6 the UML model editor view of the

transformation output model. The constraint violation happens at the second statema-

chine for class Streamer. This is, because the sequence of messages: connect, wait,

stream is not applicable for the sequence of transitions: connect, stream, ... and

aborts at message wait.

<ownedBehavior xmi:type="uml:StateMachine" xmi:id="
_qdtI8OcbEeKDavIEctcn2Q" name="option2">
<ownedComment xmi:id="_r29QYvxPEeKzja5bQDYX_g">
<body>Constraint violated at message: wait</body>

</ownedComment>
<ownedRule xmi:id="_r29QYPxPEeKzja5bQDYX_g" name="Sequence of

messages must match sequence of transitions." constrainedElement=
"_qdtI8OcbEeKDavIEctcn2Q">

<specification xmi:type="uml:OpaqueExpression" xmi:id="
_r29QYfxPEeKzja5bQDYX_g">

<language>OCL</language>
<body></body>

</specification>
</ownedRule>

Listing 4.26: XML Output Model: Message - Operation.

Chapter 4. Implementation and Discussion 37

Figure 4.6: Statemachine Constraint Violation.

4.1.5 Message - Association

Having discussed scenarios for sequence and class diagrams already, one common charac-

teristic was not mentioned yet. As messages do have an anchorpoint for its owner as well

as the sending lifeline, each message obviously connects two lifelines. As a matter of fact,

both lifelines are represented by its classes and therefore an association must exist. Given

the lifelines connected by one or more messages, associations for the corresponding classes

can be determined. Because the OCL expression possibly gets more complicated than

usual, we will not concatenate them for multiple associations within one class. Preferably,

an endpoint rule should take care of appending multiple constraints during the end of the

transformation. But for now, we do not go into detail and postpone the clarification of

this issue to the later stages of this scenario discussion. The context being more important

for initial considerations, the aspects for adding constraints and building associations is

taken into account. Since associations specify its owner and therefore imply a direction,

the messages owner is a lifeline and further represented as class. Hence, specifying class as

context is appropriate for this scenario.

Reder and Egyed discussed this design rule in [24] and formalized the OCL expression,

but with context being the message. Based on their initial OCL expression, it was the

task to further investigate boundary conditions and as a result define actions to fix them.

In Chapter 3, we have seen how to build UML associations in general, but another issue

arises when the association already exists in the opposite direction. According to the UML

metamodel, the navigable attribute represents the direction of the association. For

this scenario, the VOD AR UML model’s (Figure 2.4 and Figure 2.5) association named

display was turned around. The complete implementation can be looked up in Appendix

A.6.

Chapter 4. Implementation and Discussion 38

Formalization

A message between two lifelines guarantees an association between the two corresponding

classes.

Transformation

Analogous to the first scenario, getReceiverLifelineClass (see Listing 4.1) and

getMessagesByClass (see Listing 4.2) are reused. In addition, the following helper

getMessageLifelineBySendEvent (see Listing 4.27) returns the sender lifeline for a

given MessageOccurrenceSpecification (MOS) [12].

1 helper def: getMessageLifelineBySendEvent(snd: UML2!
MessageOccurrenceSpecification): Sequence(UML2!Lifeline) =

2 UML2!Lifeline.allInstancesFrom(’INOUT’)->select(ll | ll.coveredBy->
exists(os | os = snd));

Listing 4.27: ATL Helper: getMessageLifelineBySendEvent.

In the next snippet, presented in Listing 4.28, the three emerging cases are processed.

Basically, if an association is missing, it very well might exist in the opposite direction. If

so, the navigableOwnedEnd attribute is set to true.

1 ...
2 for (snd in sndClass) {
3 -- if asso does not exist for snd class, create it
4 if (not snd.ownedAttribute->exists(a | a.type = rcvClass)) {
5 -- if asso exists in the opposite direction
6 if (rcvClass.ownedAttribute->exists(a | a.type = snd)) {
7 assoNav <- UML2!Association.allInstancesFrom(’INOUT’)->select(a |

a = rcvClass.ownedAttribute->select(a | a.type = snd)->at(1).
association)->at(1);

8 assoNav.navigableOwnedEnd <- assoNav.ownedElement->debug(’EDIT
navigable <- true’);

9 } else {
10 asso <- thisModule.ClassOwnedAttributeAssociation(rcvClass, snd,

c05Name);
11 snd.ownedAttribute <- snd.ownedAttribute->append(asso);
12 }
13 }
14 }
15 ...

Listing 4.28: ATL Rule: do Section.

Since association generation was part of the motivating example discussed earlier, it is

omitted and simply refer to Chapter 3. Nevertheless, the called rules required are used

again and identified as the following:

• ClassOwnedAttributeAssociation

• Association

Chapter 4. Implementation and Discussion 39

• AssociationOwnedEnd

• LiteralInteger

• LiteralUnlimitedNatural

In order to append multiple constraints to the UML element ownedRule, the attachment

must be executed in the very end of the transformation process. Because the attachment

(during the do section) would overwrite the last appended element when the same UML

model is being attached over and over again. In other words, we can not alter any UML

element during transformation if it was altered during the same transformation earlier.

This is why we take advantage of an endpoint rule for this special case. This rule will be

executed right before the end of the transformation. To store the generated constraints

during transformation, the global helper sequence classCons is used for this purpose.

1 endpoint rule AppendMultipleConstraints () {
2 do {
3 for (c in thisModule.classCons) {
4 c.constrainedElement->at(1).ownedRule <- c.constrainedElement->at(1)

.ownedRule->append(c);
5 }
6 }
7 }

Listing 4.29: ATL Endpoint Rule: AppendMultipleConstraints.

Completing the transformation as well as analyzing the console output in Listing 4.30, the

navigableOwnedEnd attribute is modified and constraints are added to every associa-

tion.

EDIT navigable <- true: Sequence{service:UML2!Property}
ADD ownedRule: ’A message select between two lifelines guarantees an

association between the two corresponding classes.’
ADD ownedRule: ’A message connect between two lifelines guarantees an

association between the two corresponding classes.’
ADD ownedRule: ’A message wait between two lifelines guarantees an

association between the two corresponding classes.’
ADD ownedRule: ’A message stream between two lifelines guarantees an

association between the two corresponding classes.’
TEST: model transformation successful ...

Listing 4.30: Transformation Console Output: Message - Association.

Validation

Similar to [24], the OCL expression extracts the sender as well as the receiver lifeline (in

Listing 4.31). The sender class should then own an attribute which is not null, and the

type of the attribute must be the class of the receiver class.

Chapter 4. Implementation and Discussion 40

let l1: Lifeline = Message.allInstances()->select(name = select).
receiveEvent.covered.asSequence().at(1) in

let l2: Lifeline = Message.allInstances()->select(name = select).
sendEvent.covered.asSequence().at(1) in

let a: Sequence(Property) = l2.represents.type.ownedAttribute in not a =
null and a.type = l1.represents.type

Listing 4.31: OCL Expression: Message - Association.

The fix for an association existing in the opposite direction is then shown in Listing 4.32,

where navigableOwnedEnd is assigned to the service attribute for the association

display.

<packagedElement xmi:type="uml:Association" xmi:id="_0O8fYO1DEeKsaIbU-
otI2g" name="display" memberEnd="_0O8fYe1DEeKsaIbU-otI2g
_0OxgQO1DEeKsaIbU-otI2g" navigableOwnedEnd="_0O8fYe1DEeKsaIbU-otI2g"
>

<ownedEnd xmi:id="_0O8fYe1DEeKsaIbU-otI2g" name="service" type="
_J4teoOcZEeKDavIEctcn2Q" association="_0O8fYO1DEeKsaIbU-otI2g">

<lowerValue xmi:type="uml:LiteralInteger" xmi:id="_0O8fYu1DEeKsaIbU-
otI2g" value="1"/>

<upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="_0O8fY-1
DEeKsaIbU-otI2g" value="1"/>

</ownedEnd>
</packagedElement>

Listing 4.32: XML Output Model: Message - Association.

For the third let statement, the OCL interpreter actually fails evaluating l2.represents.

Analyzing the evaluation of OCL, l1 and l2 both evaluate correctly and conform to the

type UML lifeline. For some reason, the nested usage and the continued navigation through

represents fails. A correct validation of this expression is shown in Listing 4.33.

Evaluating:
let l1: Lifeline = Message.allInstances()->select(name = ’select’).

receiveEvent.oclAsType(MessageOccurrenceSpecification).covered in
let l2: Lifeline = Message.allInstances()->select(name = ’select’).

sendEvent.oclAsType(MessageOccurrenceSpecification).covered in
let a: Property = l2.represents.type.ownedAttribute in
not a = null and a.type = l1.represents.type
Results:
true

Listing 4.33: OCL Validation: Message - Association.

Before we continue to examine the rest of the scenarios, it is worth mentioning that the

forthcoming scenarios will not exaggerate in contrast to the ones discussed previously. For

this reason, we will focus on the practical validation part and keep Listings rare.

Chapter 4. Implementation and Discussion 41

4.1.6 Statemachine - Class

A more general scenario is based on the ownership of statemachines. As we are well aware

of the fact that statemachines are related to its owning classes, a simple formalization can

be derived. According to the UML metamodel, a statemachine is inherited from class [12]

and thus can own a constraint. The context chosen therefore is statemachine.

Testing will be done via the VOD UML model (Figure 2.3), as it fulfills the requirements

by owning at least one statemachine. The complete implementation again can be looked

up in Appendix A.7.

Formalization

Statemachine must be assigned to its corresponding class.

Transformation

Nothing special except a simple owner-based validation happens during the transformation.

The owner of the statemachine already being a class makes it relatively easy to perform

this consistency check. For the sake of completeness, the transformation console output is

shown in 4.34.

ADD ownedRule: ’Statemachine must be assigned to its corresponding class
.’

TEST: model transformation successful ...

Listing 4.34: Transformation Console Output: Statemachine - Class.

Validation

Like the transformation part, the validation can be expressed via a short OCL expression

shown in Listing 4.35.

self.owner.oclIsTypeOf(Class)

Listing 4.35: OCL Expression: Statemachine - Class.

Evaluating:
self.owner.oclIsTypeOf(Class)
Results:
true

Listing 4.36: OCL Validation: Statemachine - Class.

Chapter 4. Implementation and Discussion 42

Figure 4.7: VOD UML Model Editor Validation.

4.1.7 Statemachine - Pseudostate

Another characteristic of statemachines is the existence of at least one initial pseudostate

within a region. Truly, the UML metamodel only limits the amount of pseudostates to

a maximum of one [12]. Indeed one could simply argue that the instance of any class

type might be already in one of the possible states when instantiated. For this thesis, a

experimental approach sometimes led to more specific and constrained design rules, which

do not always conform to the UML metamodel. Nevertheless, as the region is one of

multiple potential statemachine representations of a class, region is chosen as context.

The VOD UML model (Figure 2.3) provides the necessary existence of at least one region

and therefore was used for validation. The exact module implementation is available in

Appendix A.8.

Formalization

Statechart diagram must have an initial pseudostate.

Transformation

Corresponding to the preceding scenarios, constraints are added in an usual fashion and

possibly missing pseudostates are added to the current region processed by the transfor-

mation (see Listing 4.37).

ADD ownedRule: ’Statechart region diagram must have an initial
pseudostate.’

TEST: model transformation successful ...

Listing 4.37: Transformation Console Output: Statemachine - Pseudostate.

Chapter 4. Implementation and Discussion 43

Validation

The rewritten this design-rule as OCL expression is shown in Listing 4.38.

self.ownedMember->select(oclIsTypeOf(Region)).ownedMember->exists(
oclIsTypeOf(Pseudostate))

Listing 4.38: OCL Expression: Statemachine - Pseudostate.

In Figure 4.8 and Listing 4.39, no new pseudostate was added. Corresponding to the

OCL expression, if a pseudostate already exist, none is added. But in the case of multiple

pseudostates owned by one region, no violation is triggered too.

Figure 4.8: VOD UML Model Editor Validation.

Evaluating:
self.ownedMember->select(oclIsTypeOf(Region)).ownedMember->exists(

oclIsTypeOf(Pseudostate))
Results:
true

Listing 4.39: OCL Validation: Statemachine - Class.

4.1.8 Association - Message

The eighth scenario describes the opposite of Subsection 4.1.5. Whereas for each message

an association has to exist, the other way around can be stated as well. Despite describ-

ing sequence diagrams as a subset of the class diagram, one could agree upon having an

association between two classes, thus at least one message between the two corresponding

lifelines has to exist. For the sake of completeness, this would make sense when we are

Chapter 4. Implementation and Discussion 44

going to model the whole system as sequence diagram. According to the UML metamodel,

it has to be mentioned that it is in fact not necessary. However, in rare cases, this rule

could be useful so we devote one of the nine rules as its counterpart to another one. In

terms of finding an appropriate context, we know by fact that there is at maximum one

constraint added to each association. Therefore and without a doubt, the association fits

the context for the matched rule, the constraint generated and the final OCL expression.

As the VOD AR UML model was chosen for the counterpart scenario, (Figure 2.4 and

Figure 2.5) is selected again. The full source code is appended in Appendix A.9.

Formalization

For each association, the corresponding message must exist.

Transformation

No special helpers were used, but for the generation of instances, message and MOS called

rules were defined. This is necessary as a message depends on its MOSs which attaches

it to the sender as well as receiver lifelines. In the case the association derived message is

missing, a new message and two new MOSs have to be generated. Since the context is of

type association and only one constraint will be added to it, constraints can be appended

directly in the to section during the transformation shown in Listing 4.40.

1 to
2 t: UML2!Association (
3 -- keep association properties
4

5 -- add constraint
6 ownedRule <- s.ownedRule -> append(thisModule.NewOwnedRule(s,

c08Name, c08Expr, ’OCL’))
7)

Listing 4.40: ATL Rule: to Section.

The remaining do section of the matched rule checks whether each association member

end does exist. Further, sender and receiver events of lifelines have to do as well. In order

to satisfy this constraint, such message - connecting the class lifelines - must exist or be

generated.

For this particular UML model under test, the output console in Listing 4.41 shows two

new generated messages. To understand this, we have to look at the sequence diagram.

In the sequence diagram, three lifelines do exist: Display, Service and Streamer.

According to the associations, two messages between Service and Display as well as

Chapter 4. Implementation and Discussion 45

Streamer and Display are generated (indeed with distinctive identifiers).

ADD ownedRule: ’For the association display, the corresponding message
must exist.’

ADD ownedRule: ’For the association streamer, the corresponding message
must exist.’

ADD ownedRule: ’For the association server, the corresponding message
must exist.’

ADD ownedRule: ’For the association display, the corresponding message
must exist.’

ADD message: ’display’
ADD message occurrence specification: ’display_Send’
ADD message occurrence specification: ’display_Receive’
ADD message: ’display’
ADD message occurrence specification: ’display_Send’
ADD message occurrence specification: ’display_Receive’
TEST: model transformation successful ...

Listing 4.41: Transformation Console Output: Association - Message.

Validation

Investigating the generated OCL expression in Listing 4.42, snd stands for sender lifeline

and rcv for receiver lifeline. In the nested let statements both are evaluated first. The

last line then verifies if a message connected to both exists.

let snd: Lifeline = Lifeline.allInstances()->select(represents.type =
self.memberEnd->at(1).type) in

let rcv: Lifeline =Lifeline.allInstances()->select(l | l.represents.type
= self.memberEnd->at(2).type) in

not Message.allInstances()->exists(receiveEvent = rcv)

Listing 4.42: OCL Expression: Association - Message.

Figure 4.9 shows both messages as well as MOFs being added to the model on the right.

Figure 4.9: VOD AR UML Model Editor Validation.

The actual validation for the expressed OCL statement below in Listing 4.43 evaluates to

true.

Chapter 4. Implementation and Discussion 46

Evaluating:
let snd: Lifeline = Lifeline.allInstances()->select(represents.type =

self.memberEnd->at(1).type) in
let rcv: Lifeline =Lifeline.allInstances()->select(l | l.represents.type

= self.memberEnd->at(2).type) in
not Message.allInstances()->exists(receiveEvent = rcv)
Results:
true

Listing 4.43: OCL Validation: Association - Message.

4.1.9 Activity - Operation

With similar fashion to messages, activities in statemachines are considered operations in

the corresponding class diagram. Thus the context is of type class, alike the scenario for

messages and operations. Activities are optional behaviors and are distinguished by its

preceding tag which either is /entry, /exit or /do.

The VOD AR UML model (Figure 2.4 and Figure 2.5) contains each of those three activities

once. The exact implementation can be looked up in Appendix A.10.

Formalization

Activity must be represented by an operation.

Transformation

Alongside the message - operation scenario, and for the class in context, each activity

must be represented by its corresponding operation. The console output shows the added

operations as well as the appended constraint for the Streamer class containing both

statemachines.

ADD operation: ’someActivity’
ADD operation: ’otherActivity’
ADD operation: ’anotherActivity’
ADD ownedRule: ’Activity must be represented by an operation.’
TEST: model transformation successful ...

Listing 4.44: Transformation Console Output: Activity - Operation.

Validation

For each class (and indeed for possible superclasses), the constraint rule were built via

concatenation of all occurring activity names (see Listing 4.45).

self.inheritedMember->select(oclIsTypeOf(Operation))->union(self.
ownedOperation)->exists(name=’someActivity’) and

self.inheritedMember->select(oclIsTypeOf(Operation))->union(self.
ownedOperation)->exists(name=’otherActivity’) and

Chapter 4. Implementation and Discussion 47

self.inheritedMember->select(oclIsTypeOf(Operation))->union(self.
ownedOperation)->exists(name=’anotherActivity’)

Listing 4.45: OCL Expression: Activity - Operation.

Figure 4.10 shows the UML model before (left) and after (right) the transformation.

Figure 4.10: VOD AR UML Model Editor Validation.

As expected, Listing 4.46 evaluates to true after adding the operations to the class dia-

gram.

Evaluating:
self.inheritedMember->select(oclIsTypeOf(Operation))->union(self.

ownedOperation)->exists(name=’someActivity’) and
self.inheritedMember->select(oclIsTypeOf(Operation))->union(self.

ownedOperation)->exists(name=’otherActivity’) and
self.inheritedMember->select(oclIsTypeOf(Operation))->union(self.

ownedOperation)->exists(name=’anotherActivity’)
Results:
true

Listing 4.46: OCL Validation: Activity - Operation.

Chapter 4. Implementation and Discussion 48

4.2 Usage Documentation

This section covers a detailed view on prerequisites, setup, usage and validation for the

thesis practical work.

4.2.1 Prerequisites

Eclipse

Eclipse Modeling Tools 1.5.1 (Juno Service Release 1) available for download at http://

www.eclipse.org/downloads/packages/eclipse-modeling-tools/junosr1.

This package contains the most important plug-ins for MDSD in Eclipse framework.

ATL

ATL SDK - ATLAS Transformation Language SDK 3.3.1 available through the Eclipse

menu: Help→ Install Modeling Components or for download at http://wiki.eclipse.

org/ATL/User_Guide_-_Installation#Install_ATL. ATL SDK is the prerequi-

site Eclipse plug-in on which EMVTVM is built upon.

ATL EMFTVM

EMF Transformation Virtual Machine 3.4.0 available through its update site: http://

soft.vub.ac.be/eclipse/update-3.7/. The extended VM for EMF model trans-

formation developed at the Department of Computer Science of the Vrije Universiteit

Brussel (VUB).

Papyrus

Papyrus SDK Binaries (Incubation) 0.9.2 available through the Eclipse menu: Help → In-

stall Modeling Components or for download at http://www.eclipse.org/papyrus/

downloads/.

Xtext OCL Console for UML Model Editor

OCL Examples and Editors 3.2.2 available through the Eclipse menu: Help → Install Mod-

eling Components or for download at http://www.eclipse.org/modeling/mdt/

downloads/?project=ocl.

http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/junosr1
http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/junosr1
http://wiki.eclipse.org/ATL/User_Guide_-_Installation#Install_ATL
http://wiki.eclipse.org/ATL/User_Guide_-_Installation#Install_ATL
http://soft.vub.ac.be/eclipse/update-3.7/
http://soft.vub.ac.be/eclipse/update-3.7/
http://www.eclipse.org/papyrus/downloads/
http://www.eclipse.org/papyrus/downloads/
http://www.eclipse.org/modeling/mdt/downloads/?project=ocl
http://www.eclipse.org/modeling/mdt/downloads/?project=ocl

Chapter 4. Implementation and Discussion 49

Libraries for Standalone Execution

In addition to Eclipse framework as well as the additional plug-ins, the Eclipse libraries

shown in Figure 4.11 are required for ATL EMFTVM standalone execution [3]. For con-

venient transformation execution, a simple SWT GUI was added and therefore the SWT

library is needed as well.

Figure 4.11: Libraries.

4.2.2 Project Setup

The complete framework is built from the Papyrus project (for the UML model repre-

sentation and creation), the ATL project (for transformation) and the Java project (for

the programmatical launch via SWT GUI). Figure 4.12 displays the three projects in a

hierarchical tree view.

Papyrus Project

The Models project includes the UML metamodel and the Papyrus input models expanded

in path Models/papyrus/models/....

ATL Project

The Transformations project comprises all ATL transformations: the inplace folder repre-

senting the used transformation modules using refinement mode of the EMFTVM. Since

ATL modules are compiled through their VM to byte-code, the ATL nature must be set for

the project. For the EMFTVM, actually a JIT-Compiler handles the complex compilation

Chapter 4. Implementation and Discussion 50

process. This results in a smaller binary file (*.emftvm) in contrast to the larger ASM files

(*.asm) of the original ATL transformations [3].

Java Project

For simple transformations, the ATL wizard (provided by the Eclipse plug-in itself) might

fulfill all needs. In order to maintain incremental transformation support, or package

the transformation in an existing framework, programmatical launch with Java has to be

considered. Therefore, EMFTVMLauncher provides a constructor including all possible

execution parameters. While one can execute this class as Java Application, a more con-

venient way of execution is provided via the Standard Widget Toolkit (SWT) 2 derived

Graphical User Interface (GUI) 3 implementation by the Window class.

As mentioned above and in Subsection 4.2.1, additional libraries are necessary for stan-

dalone use. In this framework the user library uml2uml was created.

4.2.3 Execution

To perform the actual transformation, class Window must be executed as Java Application.

The GUI shown in Figure 4.13 allows the specification of the ATL module file, the input

UML model file and an optional output UML model file. In order to prohibit overwriting

the input model after transformation, an optional output model file path can be specified.

In the current state, the file paths are processed as Microsoft Windows delimiters. The

console output within Eclipse framework gives immediate information concerning new UML

elements being added during the transformation.

4.2.4 Validation

The manual validation is executed with the support of Xtext OCL console in UML Model

Editor inside Eclipse framework. The Xtext OCL interpreter can be opened via right

clicking and choosing the Show Xtext OCL console command. To specify the context of

the OCL expression, an UML element must be selected. A given OCL expression, e.g. the

one generated through transformation, can then be processed within the console.

2Online at: http://www.eclipse.org/swt/.
3Online at: http://en.wikipedia.org/wiki/Graphical_user_interface.

http://www.eclipse.org/swt/
http://en.wikipedia.org/wiki/Graphical_user_interface

Chapter 4. Implementation and Discussion 51

Figure 4.12: Eclipse Project Explorer.

Figure 4.13: Transformation Execution SWT GUI.

Chapter 5

Related Work

Let us take a look at some similar work done in the last decade. Started as the ATLAS

Group and nowadays known under the name of AtlanMod 1, the team contributed impor-

tant work on scientific research concerning model-to-model transformation in MDE. The

ATL and their continued work on evolving the language is by far their biggest achieve-

ment. Alongside with this thesis in [25], Jouault and Bzivin proposed a metamodel-

independent OCL validation approach through the ATL. As the metamodel, they defined a

class diagram-like model, which is in fact a subset of the UML metamodel. Besides extend-

ing the OCL for meaningful annotations, such as covering informal constraint descriptions,

OCL expressions were verified. A set of verified expressions is called Diagnostics. For the

purpose of representing the actual verification result as a model, Diagnostics conforms to

its own metamodel. Moreover, they translated each OCL constraint into the corresponding

ATL rule, just like we have seen for the 9 scenarios in Chapter 4 of this thesis. Actually,

they only provided information about constraint violation, whereas this thesis presented

partial fixing in addition to generating OCL expressions.

In Identification and Check of Inconsistencies between UML Diagrams [26], Liu targeted

inconsistencies between different UML diagrams, but described in Prosa only. Although no

formal validation or transformation is used, finding alone the semantic connections between

multiple UML diagrams is not trivial at all. For our work, the preliminary work of Liu

provided initial and useful insights concerning constraint scenario formalization, as well as

thoughts on dealing with non-deterministic actions for fixing those inconsistencies.

1Online at: http://www.emn.fr/z-info/atlanmod/index.php/Main_Page.

52

http://www.emn.fr/z-info/atlanmod/index.php/Main_Page

Chapter 5. Related Work 53

Model transformations and constraint generations can cause a lot of challenges such as non-

deterministic choices for fixing inconsistencies, incremental rule execution dependencies,

possible model instantiations due to complex metamodels, bidirectional execution and

many more. In [23], Demuth et al. illustrated a partial solution via constraint-driven

modeling and ATL-like transformations. Specifying constraints to narrow down or control

the validation space, and because of the fact that constraints do not interfere with each

other concerning the order of execution, the problems mentioned above can be solved.

Providing guidance through immediate response to changes, made by the designer, can

solve the fixing part of non-deterministic choices as well. In general, no algorithm would

be able to make the right decisions when the problem is of ambiguous nature. The work

we presented stops fixing inconsistencies as soon as multiple actions would be possible. In

[27] Egyed presents the UML/Analyzer framework which deals with this aspects through

profiling techniques. The user then is presented a set of actions to choose from, which as

a result resolve the issue of multiple choices. The paper clearly states that the designer is

responsible for picking the right choice in order to conduct the fix. Not only consistency

contributes to a good model.

On the contrary, Egyed et al. discusses automated support for fixing inconsistencies in [28].

Not only the fix alone is considered satisfying, but also the impact of the fix is measured.

In order to select the best fix, all possible fixes (e.g. a missing operation is added, an

existing one renamed, or the counterpart of the operation just deleted) are executed and

only a fix which does not cause any new inconsistencies counts as the best fix.

As a subsequent successor to [27], Egyed and Reder again developed Model/Analyzer:

A Tool for Detection, Visualizing and Fixing Design Errors in UML [17]. Now based

on the Rational Software Modeler (RSM) 2, Model/Analyzer excels at its customizablity

such as design rule creation, in context validation and, most importantly, automated and

incremental feedback.

2Now included in Rational Software Architect (RSA) and online available at: http://www.ibm.com/
developerworks/rational/products/rsa/.

http://www.ibm.com/developerworks/rational/products/rsa/
http://www.ibm.com/developerworks/rational/products/rsa/

Chapter 6

Conclusions and Future Work

A transformation framework for automatic, partial and incremental fixing of inconsistencies

was presented. In addition, generated OCL expressions validated the performed actions

onto the UML model. For convenient usage, a GUI encapsulates the programmatically

launched transformation.

Analogous to similar work, confronted in Chapter 5, the difficulty of automatically fix-

ing inconsistencies with completeness, still remains. Overcoming the complexity of non-

deterministic fixing choices, is one of the biggest problems in this domain which still has

to be solved. Nevertheless, showing the success of the set of scenarios implemented and

discussed, this work is considered beneficial in the fields of MDE, which is very alive within

the Eclipse community. Moreover, the interoperability needed for Open-source approaches

is achieved by the anticipated Eclipse plug-in development teams.

For future work, the addition of building a subset of fixing choices and would be benefi-

cial. Letting the user decide based on outcome information would constitute significant

improvement. For this in particular, one would have to extend UML model interactivity

through the Adapter/Observer design pattern. Triggered by change, transformation rules

can be built and assembled alike [29] to fulfill the change’s implications. Although the ATL

currently supports ATL module import as well as rule inheritance [3], dependencies during

rule execution may complicate things. We are not aware of any UML modelling frame-

works, where the graphical representation is built up based on the UML file alone. Hence,

bidirectionality is hard to achieve, although refining mode in-place transformation already

being supported in ATL EMFTVM [3]. But the performance boost of not re-transforming

54

Chapter 6. Conclusions and Future Work 55

(copying) unmatched model elements, does significantly secure scalability for even large

UML models.

Other than the major potential improvements pointed out, minor enhancements such as

simplifying some OCL expressions and rearranging the UML element in context could be

done to ease validation. On the one hand, constraints have their element names looked

up during transformation, but on the other hand they are implemented only as context-

dependent expressions. The OCL validation was conducted manually to show the work’s

correctness, but still, to cover all scenarios for the UML models under test consumes time.

One might consider automatic validation, although the transformation rules actually do

represent the expression - only rewritten into a similar but yet another language.

Appendix A

Source Code

A.1 Sequence to Class Diagram

1 -- (c) Stefan Luger 2013
2 -- Transforms UML2 Sequence diagram to UML2 Class diagram
3 --
4 -- @atlcompiler emftvm
5 -- @nsURI UML2=http://www.eclipse.org/uml2/4.0.0/UML
6

7

8 module Seq2Class;
9 create OUT: UML2 from IN: UML2;

10

11 helper def: getLifelines(): Sequence(UML2!"uml::Lifeline") =
12 UML2!"uml::Lifeline".allInstances();
13

14 helper def: getConstraints(): Sequence(UML2!"uml::Constraint") =
15 UML2!"uml::Constraint".allInstances();
16

17 helper def: getMessages(): Sequence(UML2!"uml::Message") =
18 UML2!"uml::Message".allInstances();
19

20 -- for each message create tuple sets of lifelineSend and
lifelineReceived

21 helper def: getAssociations(): Sequence(OclAny) =
22 let rcv: OclAny =
23 thisModule.getReceiveLifelines()
24 in
25 let snd: OclAny =
26 thisModule.getSendLifelines()
27 in
28 rcv -> iterate(i; assSeq: Sequence(UML2!"uml::Lifeline") =

Sequence {} |
29 assSeq.append(Sequence{i,
30 snd -> at(assSeq.size() + 1)}));
31

32 helper def: getReceiveLifelines(): Sequence(UML2!"uml::Lifeline") =
33 thisModule.getMessages() -> collect(re | re.receiveEvent.covered).

first();
34

35 helper def: getSendLifelines(): Sequence(UML2!"uml::Lifeline") =
36 thisModule.getMessages() -> collect(se | se.sendEvent.covered).first()

;
37

38 rule Model {
39 from

56

Appendix A. Source Code 57

40 s: UML2!"uml::Model"
41 to
42 t: UML2!"uml::Model" (
43 name <- s.name,
44 ownedRule <- s.ownedRule,
45 packagedElement <- thisModule.getLifelines() -> union(thisModule.
46 getConstraints()) -> union(thisModule.getAssociations() ->
47 iterate(iter; a: Sequence(UML2!"uml::Association") = Sequence

{} | a.
48 append(thisModule.Association(iter.at(1), iter.at(2)))))
49)
50 }
51

52 unique lazy rule Association {
53 from rcv: UML2!"uml::Lifeline", snd: UML2!"uml::Lifeline"
54 to
55 t: UML2!"uml::Association" (
56 name <- rcv.name + ’_’ + snd.name,
57 -- memberEnd <-
58 ownedEnd <- Sequence{thisModule.AssociationOwnedEnd(rcv, snd)}
59)
60 do {
61 t; -- return generated association
62 }
63 }
64

65 lazy rule AssociationOwnedEnd {
66 from rcv: UML2!"uml::Lifeline", snd: UML2!"uml::Lifeline"
67 to
68 t: UML2!"uml::Property" (
69 name <- snd.name,
70 type <- snd,
71 lowerValue <- thisModule.LiteralInteger(1),
72 upperValue <- thisModule.LiteralUnlimitedNatural(1)
73)
74 do {
75 t;
76 }
77 }
78

79 lazy rule ClassOwnedAttributeAssociation {
80 from rcv: UML2!"uml::Lifeline", snd: UML2!"uml::Lifeline"
81 to
82 t: UML2!"uml::Property" (
83 name <- snd.name,
84 type <- snd,
85 association <- thisModule.Association(rcv, snd),
86 lowerValue <- thisModule.LiteralInteger(1),
87 upperValue <- thisModule.LiteralUnlimitedNatural(1)
88)
89 do {
90 t;
91 }
92 }
93

94 rule LiteralInteger (v: Integer) {
95 to
96 t: UML2!"uml::LiteralInteger" (
97 value <- v
98)
99 do {

100 t;
101 }
102 }
103

104 rule LiteralUnlimitedNatural (v: Integer) {
105 to
106 t: UML2!"uml::LiteralUnlimitedNatural" (
107 value <- v
108)
109 do {
110 t;
111 }
112 }

Appendix A. Source Code 58

113

114 rule OpaqueExpression {
115 from
116 s: UML2!"uml::OpaqueExpression"
117 to
118 t: UML2!"uml::OpaqueExpression" (
119 name <- s.name,
120 visibility <- s.visibility,
121 eAnnotations <- s.eAnnotations,
122 ownedComment <- s.ownedComment,
123 clientDependency <- s.clientDependency,
124 nameExpression <- s.nameExpression,
125 body <- s.body,
126 language <- s.language,
127 behavior <- s.behavior
128)
129 }
130

131 rule Message2Operation {
132 from
133 s: UML2!"uml::Message"
134 to
135 t: UML2!"uml::Operation" (
136 name <- s.name
137)
138 }
139

140 rule Lifeline2Class {
141 from
142 s: UML2!"uml::Lifeline"
143 to
144 t: UML2!"uml::Class" (
145 name <- s.name,
146 visibility <- s.visibility,
147 eAnnotations <- s.eAnnotations,
148 ownedComment <- s.ownedComment,
149 clientDependency <- s.clientDependency,
150 nameExpression <- s.nameExpression,
151 ownedOperation <- thisModule.getMessages(),
152 ownedAttribute <- let assList: Sequence(OclAny) =
153 thisModule.getAssociations()
154 in
155 if assList -> isEmpty() then
156 Sequence {}
157 else
158 let a: Sequence(OclAny) =
159 assList -> select(a | if a -> at(1) = s then
160 true
161 else
162 false
163 endif)
164 in
165 if a -> isEmpty() then
166 Sequence {}
167 else
168 Sequence {}.append(thisModule.
169 ClassOwnedAttributeAssociation(a -> flatten() ->
170 at(1), a -> flatten() -> at(2)))
171 endif
172 endif
173)
174 }
175

176 rule Constraint {
177 from
178 s: UML2!"uml::Constraint"
179 to
180 t: UML2!"uml::Constraint" (
181 name <- s.name,
182 visibility <- s.visibility,
183 eAnnotations <- s.eAnnotations,
184 ownedComment <- s.ownedComment,
185 clientDependency <- s.clientDependency,
186 nameExpression <- s.nameExpression,

Appendix A. Source Code 59

187 constrainedElement <- s.constrainedElement,
188 specification <- s.specification
189)
190 }

Listing A.1: Seq2Class.atl

A.2 Constraint-driven Scenarios

1 -- (c) Stefan Luger 2013
2 -- Each message must be represented by an operation and inside the

corresponding class
3 -- hierarchy.
4 --
5 -- @atlcompiler emftvm
6 -- @nsURI UML2=http://www.eclipse.org/uml2/4.0.0/UML
7

8

9 module Scenario01;
10 create OUT: UML2 refining IN: UML2;
11

12 -- helpers
13

14 -- only one model may exist per file
15 helper def: getModel(): UML2!Model =
16 UML2!Model.allInstancesFrom(’INOUT’).first();
17

18 helper def: getReceiverLifelineClass(m: UML2!Message): UML2!Class =
19 UML2!Lifeline.allInstancesFrom(’INOUT’) -> select(l | l.coveredBy ->

select(i | i.
20 oclIsTypeOf(UML2!MessageOccurrenceSpecification)) -> exists(e | e

= m.
21 receiveEvent)) -> first().represents.type;
22

23 helper def: getMessagesByClass(cl: UML2!Class): Sequence(UML2!Message) =
24 UML2!Message.allInstancesFrom(’INOUT’) -> select(m | thisModule.
25 getReceiverLifelineClass(m) = cl);
26

27 -- new operation constructor alternative
28 rule NewOperation (oStr: String, cStr: String, owner: OclAny){
29 using {
30 o: UML2!Operation = UML2!Operation.newInstanceIn(’INOUT’);
31 c: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);
32 }
33 do{
34 c.body <- cStr;
35 o.name <- oStr -> debug(’ADD operation’);
36 if (owner <> OclUndefined) o.class <- owner;
37 o; -- return operation
38 }
39 }
40

41 -- new constraint constructor alternative
42 rule NewOwnedRule (owner: UML2!Element, ruleName: String, exp: String, l:

String) {
43 using {
44 c: UML2!Constraint = UML2!Constraint.newInstanceIn(’INOUT’);
45 oe: UML2!OpaqueExpression = UML2!OpaqueExpression.newInstanceIn(’

INOUT’);
46 }
47 do {
48 oe.language <- oe.language -> append(l);
49 oe.body <- oe.body -> append(exp);
50 c.name <- ruleName -> debug(’ADD ownedRule’);
51 c.constrainedElement <- c.constrainedElement -> append(owner);
52 c.specification <- oe;
53 owner.ownedRule <- owner.ownedRule -> append(c);
54 c; -- return constraint
55 }

Appendix A. Source Code 60

56 }
57

58 -- for each message, look up missing operations in inheritance hierarchy
59 rule Class {
60 from
61 s: UML2!Class (
62 s.oclIsTypeOf(UML2!Class)
63)
64 using {
65 c01Name: String = ’For the class \’’ + s.name + ’\’, each message

must be’ + ’’ +
66 ’ represented by an operation and inside the corresponding class

’ + ’’ +
67 ’ hierarchy.’;
68 c01Expr: String = OclUndefined;
69 c01Elements: Sequence(UML2!Message) = OclUndefined;
70 newOps: Sequence(UML2!Message) = thisModule.getMessagesByClass(s) ->
71 debug(’ConcurrentModificationException Fix’) -> select(m | not s

.
72 ownedOperation -> exists(o | o.name = m.name));
73 }
74 to
75 t: UML2!Class (
76 -- keep class properties
77)
78 do {
79 -- add missing operations
80 for (m in newOps) {
81 -- when there is no super class, add operation to class
82 if (not s.allOwnedElements() -> exists(g | g.
83 oclIsTypeOf(UML2!Generalization))) {
84 thisModule.NewOperation(m.name, ’’, s);
85 }
86 -- otherwise add operation to model, in case it doesn’t exist

yet
87 else if (UML2!Operation -> allInstancesFrom(’INOUT’) -> select(o

| o.
88 owner = OclUndefined and o.ownedComment -> exists(oc | oc.

body =
89 c01Name)) -> isEmpty()) {
90 thisModule.NewOperation(m.name, c01Name, OclUndefined);
91 }
92 } -- get all messages for constraint expression
93 c01Elements <- thisModule.getMessagesByClass(s);
94

95 -- for each operation, build constraint
96 if (c01Elements -> size() > 0) {
97 c01Expr <- ’self.inheritedMember->select(oclIsTypeOf(Operation))->

union(self.’
98 + ’ownedOperation)->exists(name=\’’ + c01Elements.first().

name +
99 ’\’)’;

100

101 c01Elements <- c01Elements -> subSequence(2, c01Elements -> size()
);

102 for (o in c01Elements) {
103 c01Expr <- c01Expr.concat(’ and self.’ +
104 ’inheritedMember->select(oclIsTypeOf(Operation))->union(

self.’
105 + ’ownedOperation)->exists(name=\’’ + o.name + ’\’)’);
106 } -- add constraint to class
107 if (not s.allOwnedElements() -> select(c | c.
108 oclIsTypeOf(UML2!Constraint)) -> exists(c | c.name = c01Name)

and
109 s.oclIsTypeOf(UML2!Class)) {
110 thisModule.NewOwnedRule(s, c01Name, c01Expr, ’OCL’);
111 }
112 }
113 }
114 }

Listing A.2: Scenario01.atl

Appendix A. Source Code 61

1 -- (c) Stefan Luger 2013
2 -- For each lifeline, a corresponding class must exist.
3 --
4 -- @atlcompiler emftvm
5 -- @nsURI UML2=http://www.eclipse.org/uml2/4.0.0/UML
6

7

8 module Scenario02;
9 create OUT: UML2 refining IN: UML2;

10

11 -- helpers
12

13 -- only one model may exist per file
14 helper def: getModel(): UML2!Model =
15 UML2!Model.allInstancesFrom(’INOUT’).first();
16

17 helper def: getLifelineClass(l: UML2!Lifeline): UML2!Class =
18 if (l.represents = OclUndefined) then
19 OclUndefined
20 else
21 if (l.represents.type = OclUndefined) then
22 OclUndefined
23 else
24 l.represents.type
25 endif
26 endif;
27

28 -- new lifeline class link property constructor
29 rule NewLifelineClassLinkProperty (name: String, cl: UML2!Class, o: UML2!

Collaboration) {
30 using {
31 p: UML2!Property = UML2!Property.newInstanceIn(’INOUT’) -> debug(’

ADD’ + ’’ +
32 ’ property’);
33 }
34 do{
35 p.name <- name;
36 p.type <- cl;
37 o.ownedAttribute <- o.ownedAttribute -> append(p);
38 p; -- return property
39 }
40 }
41

42 -- new class constructor alternative
43 rule NewClass (name: String, abst: Boolean) {
44 using {
45 cl: UML2!Class = UML2!Class.newInstanceIn(’INOUT’);
46 }
47 do{
48 cl.name <- name;
49 cl.isAbstract <- abst;
50 thisModule.getModel().packagedElement <- thisModule.getModel().

packagedElement ->
51 append(cl);
52 cl; -- return class
53 }
54 }
55

56 -- new constraint constructor alternative
57 rule NewOwnedRule (owner: UML2!Element, ruleName: String, exp: String, l:

String) {
58 using {
59 c: UML2!Constraint = UML2!Constraint.newInstanceIn(’INOUT’);
60 oe: UML2!OpaqueExpression = UML2!OpaqueExpression.newInstanceIn(’

INOUT’);
61 }
62 do {
63 oe.language <- oe.language -> append(l);
64 oe.body <- oe.body -> append(exp);
65 c.name <- ruleName -> debug(’ADD ownedRule’);
66 c.constrainedElement <- c.constrainedElement -> append(owner);
67 c.specification <- oe;
68 owner.ownedRule <- owner.ownedRule -> append(c);

Appendix A. Source Code 62

69 c; -- return constraint
70 }
71 }
72

73 -- matched rules
74 rule Lifeline {
75 from
76 s: UML2!Lifeline (
77 s.oclIsTypeOf(UML2!Lifeline)
78)
79 using {
80 c02Name: String = ’For each lifeline, a corresponding class must

exist.’;
81 validLlName: String = s.name.at(1) -> toUpper() + s.name.substring

(2);
82 c02Expr: String = ’Lifeline.allInstances()->select(name = \’’ +

validLlName +
83 ’\’).represents.type->notEmpty()’;
84 c02Owner: UML2!Class = OclUndefined;
85 collab: UML2!Collaboration = s.owner.owner;
86 }
87 to
88 t: UML2!Lifeline (
89 -- lifeline must start with a capital character, in case of
90 -- violation, change it
91 name <- validLlName
92) -- keep lifeline properties
93

94 do {
95 -- add class to model
96 if (thisModule.getLifelineClass(s) = OclUndefined) {
97 -- when class with the same name as the Lifeline does exist, but

just isn’t
98 -- linked
99 -- yet, set constraint owner

100 -- otherwise, create new class
101 if (thisModule.getModel().allOwnedElements() -> exists(cl | cl.
102 oclIsTypeOf(UML2!Class) and cl.name = s.name)) {
103 c02Owner <- thisModule.getModel().allOwnedElements() -> select(

cl | cl.
104 oclIsTypeOf(UML2!Class) and cl.name = s.name) -> debug(’
105 FOUND class’);
106 } else {
107 -- no abstract class creation
108 c02Owner <- thisModule.NewClass(s.name, false) -> debug(’ADD

class’);
109 }
110

111 -- when there is no property for the represents attribute, add a
new property

112 if (s.represents = OclUndefined) {
113 s.represents <- thisModule.NewLifelineClassLinkProperty(s.name.

toLower(),
114 c02Owner, collab);
115 } else if (s.represents.type = OclUndefined) {
116 s.represents.type <- c02Owner;
117 }
118 } else {
119 c02Owner <- thisModule.getLifelineClass(s);
120 }
121

122 -- add constraint to lifeline
123 if (not c02Owner -> allOwnedElements() -> select(c | c.
124 oclIsTypeOf(UML2!Constraint)) -> exists(c | c.name = c02Name) and

c02Owner.
125 oclIsTypeOf(UML2!Class)) {
126 thisModule.NewOwnedRule(c02Owner, c02Name, c02Expr, ’OCL’);
127 }
128 }
129 }

Listing A.3: Scenario02.atl

Appendix A. Source Code 63

1 -- (c) Stefan Luger 2013
2 -- For each transition, a corresponding operation must exist.
3 --
4 -- @atlcompiler emftvm
5 -- @nsURI UML2=http://www.eclipse.org/uml2/4.0.0/UML
6

7

8 module Scenario03;
9 create OUT: UML2 refining IN: UML2;

10

11 -- only one model may exist per file
12 helper def: getModel(): UML2!Model =
13 UML2!Model.allInstancesFrom(’INOUT’).first();
14

15 helper def: getTransitionsByClass(cl: UML2!Class): Sequence(UML2!
Transitions) =

16 UML2!Transition.allInstancesFrom(’INOUT’) -> select(t | t.owner.owner.
owner = cl);

17

18 -- new operation constructor alternative
19 rule NewOperation (oStr: String, cStr: String, owner: OclAny){
20 using {
21 o: UML2!Operation = UML2!Operation.newInstanceIn(’INOUT’);
22 c: UML2!Comment = UML2!Comment.newInstance();
23 }
24 do{
25 c.body <- cStr;
26 o.name <- oStr -> debug(’ADD operation’);
27 o.ownedComment <- Sequence{}.append(c);
28 if (owner <> OclUndefined) o.class <- owner;
29 o; -- return operation
30 }
31 }
32

33 -- new constraint constructor alternative
34 rule NewOwnedRule (owner: UML2!Element, ruleName: String, exp: String, l:

String) {
35 using {
36 c: UML2!Constraint = UML2!Constraint.newInstanceIn(’INOUT’);
37 oe: UML2!OpaqueExpression = UML2!OpaqueExpression.newInstanceIn(’

INOUT’);
38 }
39 do {
40 oe.language <- oe.language -> append(l);
41 oe.body <- oe.body -> append(exp);
42 c.name <- ruleName -> debug(’ADD ownedRule’);
43 c.constrainedElement <- c.constrainedElement -> append(owner);
44 c.specification <- oe;
45 owner.ownedRule <- owner.ownedRule -> append(c);
46 c; -- return constraint
47 }
48 }
49

50 -- for each transition, look up missing operations in inheritance
hierarchy

51 rule Class {
52 from
53 s: UML2!Class
54 using {
55 c03Name: String = ’For each transition, a corresponding operation

must exist.’;
56 c03Expr: String = OclUndefined;
57 c03Elements: Sequence(UML2!Operation) = OclUndefined;
58 newOps: Sequence(UML2!Transition) = thisModule.getTransitionsByClass

(s) ->
59 select(tr | not s.ownedOperation -> exists(o | o.name = tr.name)

);
60 }
61 to
62 t: UML2!Class (
63 -- keep class properties
64)
65 do {

Appendix A. Source Code 64

66

67 if (not thisModule.getTransitionsByClass(s) -> select(t | not s.
ownedOperation ->

68 exists(o | o.name = t.name)) -> isEmpty()) {
69 -- add missing operations
70 for (tr in newOps) {
71 -- when there is no super class, add operation to class
72 if (not s.allOwnedElements() -> exists(g | g.
73 oclIsTypeOf(UML2!Generalization))) {
74 thisModule.NewOperation(tr.name, ’’, s);
75 }
76 -- otherwise add operation to model, in case it doesn’t exist

yet
77 else if (UML2!Operation -> allInstancesFrom(’INOUT’) -> select(o

| o.
78 owner = OclUndefined and o.ownedComment -> exists(oc | oc.

body =
79 c03Name)) -> isEmpty()) {
80 thisModule.NewOperation(tr.name, c03Name, OclUndefined);
81 }
82 }
83 }
84 -- get all operations for constraint expression
85 c03Elements <- thisModule.getTransitionsByClass(s);--s.

ownedOperation ->
86 -- union(newOps);
87 -- for each operation, build constraint
88 if (c03Elements -> size() > 0) {
89 c03Expr <- ’self.inheritedMember->select(oclIsTypeOf(Operation))->

union(self.’
90 + ’ownedOperation)->exists(name=\’’ + c03Elements.first().

name
91 + ’\’)’;
92

93 c03Elements <- c03Elements -> subSequence(2, c03Elements -> size()
);

94 for (o in c03Elements) {
95 c03Expr <- c03Expr.concat(’ and self.’ +
96 ’inheritedMember->select(oclIsTypeOf(Operation))->union(

self.’
97 + ’ownedOperation)->exists(name=\’’ + o.name + ’\’)’);
98 } -- add constraint to class
99 if (not s.allOwnedElements() -> select(c | c.

100 oclIsTypeOf(UML2!Constraint)) -> exists(c | c.name = c03Name)
and

101 s.oclIsTypeOf(UML2!Class)) {
102 thisModule.NewOwnedRule(s, c03Name, c03Expr, ’OCL’);
103 }
104 }
105 }
106 }

Listing A.4: Scenario03.atl

1 -- (c) Stefan Luger 2013
2 -- Sequence of messages must match sequence of transitions.
3 --
4 -- @atlcompiler emftvm
5 -- @nsURI UML2=http://www.eclipse.org/uml2/4.0.0/UML
6

7

8 module Scenario04;
9 create OUT: UML2 refining IN: UML2;

10

11 -- helpers
12

13 helper def: getMessagesByClass(cl: UML2!Class): Sequence(UML2!Message) =
14 UML2!Message.allInstancesFrom(’INOUT’) -> select(m | thisModule.
15 getReceiverLifelineClass(m) = cl);
16

17 helper def: getStatemachinesByClass(cl: UML2!Class): Sequence(UML2!
StateMachine) =

Appendix A. Source Code 65

18 UML2!StateMachine.allInstancesFrom(’INOUT’) -> select(sm | sm.owner =
cl);

19

20 helper def: getReceiverLifelineClass(m: UML2!Message): UML2!Class =
21 UML2!Lifeline.allInstancesFrom(’INOUT’) -> select(l | l.coveredBy ->

select(i | i.
22 oclIsTypeOf(UML2!MessageOccurrenceSpecification)) -> exists(e | e

= m.
23 receiveEvent)) -> first().represents.type;
24

25 helper def: getTransitionsByClass(cl: UML2!Class): Sequence(UML2!
Transitions) =

26 UML2!Transition.allInstancesFrom(’INOUT’) -> select(t | t.owner.owner.
owner = cl);

27

28 helper def: reorderTransitions(st: UML2!Vertex, sm: UML2!StateMachine, l:
29 Sequence(UML2!Transition), visited: Sequence(UML2!Vertex)):
30 Sequence(UML2!Transition) =
31 if visited -> exists(e | e = st) then
32 l -> append(UML2!Transition.allInstancesFrom(’INOUT’) -> select(t2 |

t2.owner.
33 owner = sm and t2.source = st))
34 else
35 -- append transition to list and recursively call function for

target state
36 UML2!Transition.allInstancesFrom(’INOUT’) -> select(t1 | t1.owner.

owner = sm and
37 t1.source = st) -- for each source
38 -> iterate(i; init: OclAny = OclUndefined | -- call recursively
39 thisModule.reorderTransitions(i.target, sm, (l -> append(UML2!

Transition.
40 allInstancesFrom(’INOUT’) -> select(t2 | t2.owner.owner = sm

and t2.
41 source = st))), visited -> append(i.source)))
42 endif;
43

44 helper def: traverse(st: UML2!Vertex, i: Integer, t: Sequence(UML2!
Transition), msgs:

45 Sequence(UML2!Messages), tnsns: Sequence(UML2!Transition)): Integer
=

46 if msgs.at(i) = msgs -> last() and t -> exists(tr | tr.name = msgs.at(
i).name) then

47 0
48 else
49 if not t -> exists(tr | tr.name = msgs.at(i).name) then
50 if t = tnsns -> at(1) then
51 thisModule.traverse(t -> select(tr | tr.source = st) -> at(1).

target, i,
52 tnsns -> select(tri | t -> select(tr | tr.source = st) ->

at(1).
53 target = tri -> at(1).source) -> flatten(), msgs, tnsns)
54 else
55 i
56 endif
57 else
58 thisModule.traverse(t -> select(tr | tr.name = msgs.at(i).name) ->

at(1).
59 target, (i + 1), tnsns -> select(tri | tri -> exists(e | e.

source =
60 (t -> select(tr | tr.name = msgs.at(i).name) -> at(1).target)

)) ->
61 flatten(), msgs, tnsns)
62 endif
63 endif;
64

65 -- new comment constructor alternative
66 rule NewComment (owner: UML2!Element, cStr: String){
67 using {
68 c: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);
69 }
70 do{
71 c.body <- cStr;
72 owner.ownedComment <- Sequence{}.append(c);
73 c; -- return operation

Appendix A. Source Code 66

74 }
75 }
76

77 -- new constraint constructor alternative
78 rule NewOwnedRule (owner: UML2!Element, ruleName: String, exp: String, l:

String) {
79 using {
80 c: UML2!Constraint = UML2!Constraint.newInstanceIn(’INOUT’);
81 oe: UML2!OpaqueExpression = UML2!OpaqueExpression.newInstanceIn(’

INOUT’);
82 }
83 do {
84 oe.language <- oe.language -> append(l);
85 oe.body <- oe.body -> append(exp);
86 c.name <- ruleName -> debug(’ADD ownedRule’);
87 c.constrainedElement <- c.constrainedElement -> append(owner);
88 c.specification <- oe;
89 owner.ownedRule <- owner.ownedRule -> append(c);
90 c; -- return constraint
91 }
92 }
93

94 -- for each lifeline, get sequence of messages.
95 -- for each statemachine representing that lifeline, check wether order

of transitions
96 -- match order of messages
97 rule Class {
98 from
99 s: UML2!Class (

100 s.oclIsTypeOf(UML2!Class)
101)
102 using {
103 c04Name: String = ’Sequence of messages must match sequence of

transitions.’;
104 c04Expr: String = ’’;
105 c04Owner: UML2!Class = OclUndefined;
106 c04Messages: Sequence(UML2!Message) = thisModule.getMessagesByClass(

s); --
107 -- ordered already
108

109 c04StateMachines: Sequence(UML2!StateMachine) = thisModule.
110 getStatemachinesByClass(s);
111 c04Transitions: Sequence(UML2!Transition) = Sequence{};
112 c04Start: UML2!Vertex = OclUndefined;
113 c04ConstraintViolated: Integer = 0;
114 }
115 to
116 t: UML2!Class (
117 -- keep class properties
118)
119 do {
120 -- reorder transitions
121 for (sm in c04StateMachines) {
122 c04Transitions <- UML2!Transition.allInstancesFrom(’INOUT’) ->

select(t | t.
123 owner.owner = sm);
124

125 c04Start <- let ps: Sequence(UML2!Vertex) =
126 UML2!Pseudostate.allInstancesFrom(’INOUT’).asSequence()
127 in
128 if ps = Sequence{} then
129 OclUndefined
130 else
131 ps -> select(st | st.owner.owner = sm) -> at(1)
132 endif;
133

134 -- from initial state:
135 -- look up initial state in transitions as source -> write

transition ->
136 -- get target, repeat
137 -- until all transitions were written into the new ordered

sequence of
138 -- transitions
139

Appendix A. Source Code 67

140 if (not UML2!Pseudostate.allInstancesFrom(’INOUT’) -> isEmpty()) {
141 c04Transitions <- thisModule.reorderTransitions(c04Start, sm,

Sequence{},
142 Sequence{});
143

144 c04ConstraintViolated <- thisModule.traverse(c04Start, 1,
c04Transitions

145 -> at(1), c04Messages, c04Transitions);
146

147 c04Owner <- sm;
148 if (not c04Owner -> allOwnedElements() -> select(c | c.
149 oclIsTypeOf(UML2!Constraint)) -> exists(c | c.name = c04Name)

and s.
150 oclIsTypeOf(UML2!Class) and s.oclIsTypeOf(UML2!Class)) {
151 thisModule.NewOwnedRule(c04Owner, c04Name, c04Expr, ’OCL’);
152 }
153 if (c04ConstraintViolated <> 0) {
154 -- add comment stating violation
155 thisModule.NewComment(c04Owner, ’Constraint violated at

message: ’.
156 concat(c04Messages -> at(c04ConstraintViolated).name)) ->
157 debug(’CONSTRAINT VIOLATED’);
158 }
159

160 c04ConstraintViolated = 0; -- reset violation
161 }
162 }
163 }
164 }

Listing A.5: Scenario04.atl

1 -- (c) Stefan Luger 2013
2 -- A message between two lifelines guarantees an association between the

two corresponding classes.
3 -- If an association exists in the opposite direction, the right

association will still be added, but the former association wont be
removed.

4 --
5 -- @atlcompiler emftvm
6 -- @nsURI UML2=http://www.eclipse.org/uml2/4.0.0/UML
7

8 module Scenario05;
9 create OUT: UML2 refining IN: UML2;

10

11 -- only one model may exist per file
12 helper def: classCons : Sequence(UML2!Constraint) = Sequence{};
13

14 helper def: getModel(): UML2!Model =
15 UML2!Model.allInstancesFrom(’INOUT’).first();
16

17 helper def: getReceiverLifelineClass(m: UML2!Message): UML2!Class =
18 UML2!Lifeline.allInstancesFrom(’INOUT’) -> select(l | l.coveredBy ->

select(i | i.
19 oclIsTypeOf(UML2!MessageOccurrenceSpecification)) -> exists(e | e

= m.
20 receiveEvent)) -> first().represents.type;
21

22 helper def: getMessagesByClass(cl: UML2!Class): Sequence(UML2!Message) =
23 UML2!Message.allInstancesFrom(’INOUT’) -> select(m | thisModule.

getReceiverLifelineClass(m) =
24 cl);
25

26 helper def: getMessageLifelineBySendEvent(snd: UML2!
MessageOccurrenceSpecification): Sequence(UML2!Lifeline) =

27 UML2!Lifeline.allInstancesFrom(’INOUT’)->select(ll | ll.coveredBy->
exists(os | os = snd));

28

29 -- new comment constructor alternative
30 rule NewComment (owner: UML2!Element, cStr: String){
31 using {
32 c: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);

Appendix A. Source Code 68

33 }
34 do{
35 c.body <- cStr;
36 owner.ownedComment <- Sequence{}.append(c);
37 c; -- return operation
38 }
39 }
40

41 -- new operation constructor alternative
42 rule NewAssociation (aStr: String, cStr: String){
43 using {
44 a: UML2!Association = UML2!Association.newInstanceIn(’INOUT’);
45 c: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);
46 }
47 do{
48 c.body <- cStr;
49 a.name <- aStr -> debug(’ADD association’);
50 a.ownedComment <- Sequence{}.append(c);
51 a; -- return operation
52 }
53 }
54

55 -- new operation constructor alternative
56 rule NewOperation (oStr: String, cStr: String){
57 using {
58 o: UML2!Operation = UML2!Operation.newInstanceIn(’INOUT’);
59 c: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);
60 }
61 do{
62 c.body <- cStr;
63 o.name <- oStr -> debug(’ADD operation’);
64 o.ownedComment <- Sequence{}.append(c);
65 o; -- return operation
66 }
67 }
68

69 -- new constraint constructor alternative
70 rule NewOwnedRule (owner: UML2!Element, ruleName: String, exp: String, l:

String) {
71 using {
72 c: UML2!Constraint = UML2!Constraint.newInstanceIn(’INOUT’);
73 oe: UML2!OpaqueExpression = UML2!OpaqueExpression.newInstanceIn(’

INOUT’);
74 }
75 do {
76 oe.language <- oe.language -> append(l);
77 oe.body <- oe.body -> append(exp);
78 c.name <- ruleName -> debug(’ADD ownedRule’);
79 c.constrainedElement <- c.constrainedElement -> append(owner);
80 c.specification <- oe;
81 --owner.ownedRule <- owner.ownedRule->asSequence().append(c);
82 c; -- return constraint
83 }
84 }
85

86 rule ClassOwnedAttributeAssociation (rcv: UML2!Class, snd: UML2!Class,
cStr: String){

87 using {
88 p: UML2!Property = UML2!Property.newInstanceIn(’INOUT’)->debug(’ADD

association’);
89 list: OclAny = OclUndefined;
90 }
91 do {
92 p.name <- rcv.name.toLower();
93 p.type <- snd;
94 p.association <- thisModule.Association(rcv, snd);
95 p.ownedComment <- p.ownedComment->append(thisModule.NewComment(p,

cStr));
96 p.lowerValue <- thisModule.LiteralInteger(1);
97 p.upperValue <- thisModule.LiteralUnlimitedNatural(1);
98 p;
99 }

100 }
101

Appendix A. Source Code 69

102 rule Association (rcv: UML2!Class, snd: UML2!Class){
103 using {
104 a: UML2!Association = UML2!Association.newInstanceIn(’INOUT’);
105 }
106 do {
107 a.name <- rcv.name.toLower();
108 a.ownedEnd <- Sequence{thisModule.AssociationOwnedEnd(rcv, snd)};
109 thisModule.getModel().packagedElement <- thisModule.getModel().

packagedElement ->
110 append(a);
111 a;
112 }
113 }
114

115 rule AssociationOwnedEnd (rcv: UML2!Class, snd: UML2!Class){
116 using {
117 p: UML2!Property = UML2!Property.newInstanceIn(’INOUT’);
118 }
119 do {
120 p.name <- snd.name;
121 p.type <- snd;
122 p.lowerValue <- thisModule.LiteralInteger(1);
123 p.upperValue <- thisModule.LiteralUnlimitedNatural(1);
124 p;
125 }
126 }
127

128 rule LiteralInteger (v: Integer) {
129 using {
130 i: UML2!LiteralInteger = UML2!LiteralInteger.newInstanceIn(’INOUT’);
131 }
132 do {
133 i.value <- v;
134 i;
135 }
136 }
137

138 rule LiteralUnlimitedNatural (v: Integer) {
139 using {
140 i: UML2!LiteralUnlimitedNatural = UML2!LiteralUnlimitedNatural.

newInstanceIn(’INOUT’);
141 }
142 do {
143 i.value <- v;
144 i;
145 }
146 }
147

148 rule Class {
149 from
150 s: UML2!Class
151 using {
152 c05Name: String = ’’;
153 c05Expr: String = ’’;
154 c05Elements: Sequence(UML2!Message) = thisModule.getMessagesByClass(

s);
155 c05Owner: UML2!Class = s;
156 asso: UML2!Association = OclUndefined;
157 rcvClass: UML2!Class = s;
158 sndClass: Sequence(UML2!Class) = Sequence{};
159 ll: Sequence(UML2!Lifeline) = Sequence{};
160 assoNav: UML2!Property = OclUndefined;
161 }
162 to
163 t: UML2!Class (
164 -- keep class properties
165)
166 do {
167 for (m in c05Elements) {
168 ll <- thisModule.getMessageLifelineBySendEvent(m.sendEvent);
169 if (not ll->isEmpty() and not sndClass->exists(e | e = ll->first()

.represents.type)) {
170 sndClass <- sndClass->append(ll->first().represents.type);
171 }

Appendix A. Source Code 70

172 }
173

174 for (snd in sndClass) {
175 -- if asso doesn’t exist for snd class, create it
176 if (not snd.ownedAttribute->exists(a | a.type = rcvClass)) {
177 -- if asso exists in the opposite direction
178 if (rcvClass.ownedAttribute->exists(a | a.type = snd)) {
179 assoNav <- UML2!Association.allInstancesFrom(’INOUT’)->select

(a | a = rcvClass.ownedAttribute->select(a | a.type = snd)
->at(1).association)->at(1);

180 assoNav.navigableOwnedEnd <- assoNav.ownedElement->debug(’
EDIT navigable <- true’);

181 } else {
182 asso <- thisModule.ClassOwnedAttributeAssociation(rcvClass,

snd, c05Name);
183 snd.ownedAttribute <- snd.ownedAttribute->append(asso);
184 }
185 }
186 }
187

188 for (m in c05Elements) {
189 -- add constraint to class
190 c05Name <- ’A message ’ + m.name + ’ between two lifelines

guarantees an association between the two corresponding
classes.’;

191 c05Expr <- ’let l1: Lifeline = Message.allInstances()->select(name
= \’’ + m.name + ’\’).receiveEvent.oclAsType(

MessageOccurrenceSpecification).covered in’ +
192 ’ let l2: Lifeline = Message.allInstances()->select(name = \’’ + m

.name + ’\’).sendEvent.oclAsType(
MessageOccurrenceSpecification).covered in’ +

193 ’ let a: Property = l2.represents.type.ownedAttribute in’ +
194 ’ a.oclAsSequence()->notEmpty() and a.type = l1.represents.type’;
195 if (not c05Owner -> allOwnedElements() -> select(c | c.
196 oclIsTypeOf(UML2!Constraint)) -> exists(c | c.name = c05Name) and

s.oclIsTypeOf(UML2!Class)) {
197 thisModule.classCons <- thisModule.classCons->append(thisModule.

NewOwnedRule(c05Owner, c05Name, c05Expr, ’OCL’));
198 }
199 }
200 }
201 }
202

203 endpoint rule AppendMultipleConstraints () {
204 do {
205 for (c in thisModule.classCons) {
206 c.constrainedElement->at(1).ownedRule <- c.constrainedElement->at

(1).ownedRule->append(c);
207 }
208 }
209 }

Listing A.6: Scenario05.atl

1 -- (c) Stefan Luger 2013
2 -- Statemachine must be assigned to its corresponding class.
3 --
4 -- @atlcompiler emftvm
5 -- @nsURI UML2=http://www.eclipse.org/uml2/4.0.0/UML
6

7

8 module Scenario06;
9 create OUT: UML2 refining IN: UML2;

10

11 -- only one model may exist per file
12 helper def: getModel(): UML2!Model =
13 UML2!Model.allInstancesFrom(’INOUT’).first();
14

15 helper def: getStateMachines(): Sequence(UML2!StateMachine) =
16 UML2!StateMachine.allInstancesFrom(’INOUT’);
17

18 helper def: getClassByStatemachine(sm: UML2!StateMachine): UML2!Class =

Appendix A. Source Code 71

19 sm.owner;
20

21 -- new comment constructor alternative
22 rule NewComment (owner: UML2!Element, cStr: String){
23 using {
24 c: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);
25 }
26 do{
27 c.body <- cStr;
28 owner.ownedComment <- Sequence{}.append(c);
29 c; -- return operation
30 }
31 }
32

33 -- new constraint constructor alternative
34 rule NewOwnedRule (owner: UML2!Element, ruleName: String, exp: String, l:

String) {
35 using {
36 c: UML2!Constraint = UML2!Constraint.newInstanceIn(’INOUT’);
37 oe: UML2!OpaqueExpression = UML2!OpaqueExpression.newInstanceIn(’

INOUT’);
38 }
39 do {
40 oe.language <- oe.language -> append(l);
41 oe.body <- oe.body -> append(exp);
42 c.name <- ruleName -> debug(’ADD ownedRule’);
43 c.constrainedElement <- c.constrainedElement -> append(owner);
44 c.specification <- oe;
45 owner.ownedRule <- owner.ownedRule -> append(c);
46 c; -- return constraint
47 }
48 }
49

50 rule StateMachine {
51 from
52 s: UML2!StateMachine
53 using {
54 c06Name: String = ’Statemachine must be assigned to its

corresponding class.’;
55 c06Expr: String = ’self.owner.oclIsTypeOf(Class)’;
56 c06Owner: UML2!Class = s;
57 c06Elements: Sequence(UML2!Statemachine) = thisModule.

getStateMachines();
58 }
59 to
60 t: UML2!StateMachine (
61 -- keep StateMachine properties
62)
63 do {
64 -- add comment
65 -- if (not s.ownedComment->exists(c | c.body = c06Name) and not
66 -- s.owner.oclIsTypeOf(UML2!Class)) {
67 -- thisModule.NewComment(s, c06Name);
68 -- }
69

70 -- add constraint
71 if (not s.allOwnedElements() -> select(c | c.oclIsTypeOf(UML2!

Constraint)) ->
72 exists(c | c.name = c06Name)) {
73 thisModule.NewOwnedRule(s, c06Name, c06Expr, ’OCL’);
74 }
75 }
76 }

Listing A.7: Scenario06.atl

Appendix A. Source Code 72

1 -- (c) Stefan Luger 2013
2 -- Statechart diagram must have an initial pseudostate.
3 --
4 -- @atlcompiler emftvm
5 -- @nsURI UML2=http://www.eclipse.org/uml2/4.0.0/UML
6

7 module Scenario07;
8 create OUT: UML2 refining IN: UML2;
9

10 -- only one model may exist per file
11 helper def: getModel(): UML2!Model =
12 UML2!Model.allInstancesFrom(’INOUT’).first();
13

14 -- new comment constructor alternative
15 rule NewComment (owner : UML2!Element, cStr: String){
16 using {
17 c: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);
18 }
19 do{
20 c.body <- cStr;
21 owner.ownedComment <- Sequence{}.append(c);
22 c; -- return operation
23 }
24 }
25

26 -- new constraint constructor alternative
27 rule NewOwnedRule (owner: UML2!Element, ruleName: String, exp: String, l:

String) {
28 using {
29 c: UML2!Constraint = UML2!Constraint.newInstanceIn(’INOUT’);
30 oe: UML2!OpaqueExpression = UML2!OpaqueExpression.newInstanceIn(’

INOUT’);
31 }
32 do {
33 oe.language <- oe.language -> append(l);
34 oe.body <- oe.body -> append(exp);
35 c.name <- ruleName -> debug(’ADD ownedRule’);
36 c.constrainedElement <- c.constrainedElement -> append(owner);
37 c.specification <- oe;
38 owner.ownedRule <- owner.ownedRule -> append(c);
39 c; -- return constraint
40 }
41 }
42

43 -- new pseudostate constructor alternative
44 rule NewPseudostate (psStr: String, cStr: String, owner: UML2!Region){
45 using {
46 ps: UML2!Pseudostate = UML2!Pseudostate.newInstanceIn(’INOUT’);
47 c1: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);
48 c2: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);
49 t: UML2!Transition = UML2!Transition.newInstanceIn(’INOUT’);
50 }
51 do{
52 c1.body <- psStr;
53 c2.body <- psStr;
54 ps->debug(’ps’);
55 ps.name <- ’’ -> concat(psStr) -> debug(’ADD message’);
56 ps.ownedComment <- Sequence{}.append(c1)->debug(’new comment’);
57 ps.container <- owner;
58 t.container <- owner;
59 t.name <- psStr;
60 t.source <- ps;
61 t.ownedComment <- Sequence{}.append(c2);
62 ps; -- return pseudostate
63 }
64 }
65

66 rule Region {
67 from
68 s: UML2!Region (not s.oclIsTypeOf(UML2!Interaction) and not s.

oclIsTypeOf(UML2!Class))
69 using {
70 c07Name: String = ’Statechart region diagram must have an initial

Appendix A. Source Code 73

pseudostate.’;
71 c07Expr: String = ’self.ownedMember->select(oclIsTypeOf(Region)).

ownedMember->exists(oclIsTypeOf(Pseudostate))’;
72 }
73 to
74 t: UML2!Region (
75 -- keep region properties
76)
77 do {
78 -- add pseudostate
79 if (not s.allOwnedElements()->exists(is | is.oclIsKindOf(UML2!

Pseudostate))) {
80 thisModule.NewPseudostate(c07Name, c07Expr, s);
81 }
82

83 -- add constraint
84 if (not s.allOwnedElements() -> select(c | c.oclIsTypeOf(UML2!

Constraint)) -> exists(c | c.name = c07Name) and s.oclIsTypeOf(
UML2!Region)) {

85 thisModule.NewOwnedRule(s, c07Name, c07Expr, ’OCL’);
86 }
87 }
88 }

Listing A.8: Scenario07.atl

1 -- (c) Stefan Luger 2013
2 -- For each association, the corresponding message must exist.
3 --
4 -- @atlcompiler emftvm
5 -- @nsURI UML2=http://www.eclipse.org/uml2/4.0.0/UML
6

7

8 module Scenario08;
9 create OUT: UML2 refining IN: UML2;

10

11 -- only one model may exist per file
12 helper def: getModel(): UML2!Model =
13 UML2!Model.allInstancesFrom(’INOUT’).first();
14

15 -- only one sequence diagram per model may exist
16 helper def: getInteraction(): UML2!Interaction =
17 UML2!Interaction.allInstancesFrom(’INOUT’) -> at(1);
18

19 -- new comment constructor alternative
20 rule NewComment (owner: UML2!Element, cStr: String){
21 using {
22 c: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);
23 }
24 do{
25 c.body <- cStr;
26 owner.ownedComment <- Sequence{}.append(c);
27 c; -- return comment
28 }
29 }
30

31 -- new constraint constructor alternative
32 rule NewOwnedRule (owner: UML2!Element, ruleName: String, exp: String, l:

String) {
33 using {
34 c: UML2!Constraint = UML2!Constraint.newInstanceIn(’INOUT’);
35 oe: UML2!OpaqueExpression = UML2!OpaqueExpression.newInstanceIn(’

INOUT’);
36 }
37 do {
38 oe.language <- oe.language -> append(l);
39 oe.body <- oe.body -> append(exp);
40 c.name <- ruleName -> debug(’ADD ownedRule’);
41 c.constrainedElement <- c.constrainedElement -> append(owner);
42 c.specification <- oe;
43 owner.ownedRule <- owner.ownedRule -> append(c);
44 c; -- return constraint

Appendix A. Source Code 74

45 }
46 }
47

48 -- new message constructor alternative
49 rule NewMessage (mStr: String, cStr: String, rcv: UML2!Lifeline, snd:

UML2!Lifeline,
50 owner: UML2!Interaction){
51 using {
52 m: UML2!Message = UML2!Message.newInstanceIn(’INOUT’);
53 c: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);
54 }
55 do{
56 c.body <- cStr;
57 m.name <- ’’ -> concat(mStr) -> debug(’ADD message’);
58 --m.messageSort <- ’asynchCall’;
59 m.ownedComment <- Sequence{}.append(c);
60 m.interaction <- owner;
61 m; -- return message
62 }
63 }
64

65 -- new messageoccurencespecification constructor alternative
66 rule NewMessageOccurenceSpecification (mStr: String, ll: UML2!Lifeline, m

: UML2!Message,
67 owner: UML2!Interaction) {
68 using {
69 mos: UML2!MessageOccurrenceSpecification = UML2!

MessageOccurrenceSpecification.
70 newInstanceIn(’INOUT’);
71 }
72 do{
73 mos.name <- mStr -> debug(’ADD message occurence specification’);
74 mos.covered <- Sequence{ll};
75 mos.message <- m;
76 mos.enclosingInteraction <- owner;
77 mos; -- return mos
78 }
79 }
80

81 rule Association {
82 from
83 s: UML2!Association (
84 not s.allOwnedElements() -> select(c | c.oclIsTypeOf(UML2!

Constraint)) ->
85 exists(c | c.name = ’For the association ’ + s.name + ’, a

message’ +
86 ’ must exist.’)
87)
88 using {
89 c08Name: String = ’For the association ’ + s.name + ’, the

corresponding message’
90 + ’ must exist.’;
91 c08Expr: String = ’let snd: Lifeline = Lifeline.allInstances()->

select(represents.’
92 + ’.type = self.memberEnd->at(1).type) in ’ + ’let rcv:’ + ’’
93 + ’ Lifeline = Lifeline.allInstances()->select(l | l.represents.

type’
94 + ’ = self.memberEnd->at(2).type) in ’ + ’not Message.’ +
95 ’allInstances()->exists(receiveEvent = rcv)’;
96 c08Snd: Sequence(UML2!Lifeline) = UML2!Lifeline.allInstancesFrom(’

INOUT’) ->
97 select(l | l.represents.type = s.memberEnd -> at(1).type);
98 c08Rcv: Sequence(UML2!Lifeline) = UML2!Lifeline.allInstancesFrom(’

INOUT’) ->
99 select(l | l.represents.type = s.memberEnd -> at(2).type);

100 c08MsgName: String = s.name;
101 c08SndEvent: UML2!MessageOccurrenceSpecification = OclUndefined;
102 c08RcvEvent: UML2!MessageOccurrenceSpecification = OclUndefined;
103 c08Msg: UML2!Message = OclUndefined;
104 }
105 to
106 t: UML2!Association (
107 -- keep class properties
108

Appendix A. Source Code 75

109 -- add constraint
110 ownedRule <- s.ownedRule -> append(thisModule.NewOwnedRule(s,

c08Name,
111 c08Expr, ’OCL’))
112)
113 do {
114 -- a lifeline for association member end must exist
115 if (not c08Snd -> isEmpty() and not c08Rcv -> isEmpty()) {
116 -- if no message exists for the receiver lifeline, add a new one
117 if (UML2!Message.allInstancesFrom(’INOUT’) -> select(m | m.

receiveEvent <>
118 OclUndefined and m.sendEvent <> OclUndefined and m.

receiveEvent.
119 covered = c08Rcv and m.sendEvent.covered = c08Snd) -> isEmpty

()) {
120

121 -- create new elements
122 c08Msg <- thisModule.NewMessage(c08MsgName, c08Name, c08Rcv ->

at(1),
123 c08Snd -> at(1), thisModule.getInteraction());
124 c08RcvEvent <- thisModule.NewMessageOccurenceSpecification(

c08MsgName.
125 concat(’_Send’), c08Rcv -> at(1), c08Msg, thisModule.
126 getInteraction());
127 c08SndEvent <- thisModule.NewMessageOccurenceSpecification(

c08MsgName.
128 concat(’_Receive’), c08Snd -> at(1), c08Msg, thisModule.
129 getInteraction());
130 c08Msg.receiveEvent <- c08RcvEvent;
131 c08Msg.sendEvent <- c08SndEvent;
132 }
133 }
134 }
135 }

Listing A.9: Scenario08.atl

1 -- (c) Stefan Luger 2013
2 -- Activity must be represented by an operation.
3 --
4 -- @atlcompiler emftvm
5 -- @nsURI UML2=http://www.eclipse.org/uml2/4.0.0/UML
6

7

8 module Scenario09;
9 create OUT: UML2 refining IN: UML2;

10

11 -- only one model may exist per file
12 helper def: getModel(): UML2!Model =
13 UML2!Model.allInstancesFrom(’INOUT’).first();
14

15 helper def: getActivitysByClass(cl: UML2!Class): Sequence(UML2!Activity)
=

16 cl.allOwnedElements() -> select(a | a.oclIsTypeOf(UML2!Activity));
17

18 -- new comment constructor alternative
19 rule NewComment (owner: UML2!Element, cStr: String){
20 using {
21 c: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);
22 }
23 do{
24 c.body <- cStr;
25 owner.ownedComment <- Sequence{}.append(c);
26 c; -- return comment
27 }
28 }
29

30 -- new constraint constructor alternative
31 rule NewOwnedRule (owner: UML2!Element, ruleName: String, exp: String, l:

String) {
32 using {
33 c: UML2!Constraint = UML2!Constraint.newInstanceIn(’INOUT’);

Appendix A. Source Code 76

34 oe: UML2!OpaqueExpression = UML2!OpaqueExpression.newInstanceIn(’
INOUT’);

35 }
36 do {
37 oe.language <- oe.language -> append(l);
38 oe.body <- oe.body -> append(exp);
39 c.name <- ruleName -> debug(’ADD ownedRule’);
40 c.constrainedElement <- c.constrainedElement -> append(owner);
41 c.specification <- oe;
42 owner.ownedRule <- owner.ownedRule -> append(c);
43 c; -- return constraint
44 }
45 }
46

47 -- new operation constructor alternative
48 rule NewOperation (oStr: String, cStr: String, owner: UML2!Class){
49 using {
50 o: UML2!Operation = UML2!Operation.newInstanceIn(’INOUT’);
51 c: UML2!Comment = UML2!Comment.newInstanceIn(’INOUT’);
52 }
53 do{
54 c.body <- cStr;
55 o.name <- oStr -> debug(’ADD operation’);
56 o.ownedComment <- Sequence{}.append(c);
57 o.class <- owner;
58 o; -- return operation
59 }
60 }
61

62 rule Class {
63 from
64 s: UML2!Class (
65 not s.oclIsTypeOf(UML2!Interaction) and not s.oclIsTypeOf(UML2!

StateMachine)
66)
67 using {
68 c09Name: String = ’Activity must be represented by an operation.’;
69 c09Expr: String = ’’;
70 c09Owner: UML2!Class = s;
71 c09Elements: Sequence(UML2!Message) = OclUndefined;
72 c09Activities: Sequence(UML2!Activity) = thisModule.

getActivitysByClass(s) ->
73 select(a | not s.ownedOperation -> exists(o | o.name = a.name));
74 c09Ops: Sequence(UML2!Operations) = Sequence{};
75 }
76 to
77 t: UML2!Class (
78 -- keep class properties
79)
80 do {
81 for (m in c09Activities) {
82 -- when there is no super class, add operation to class
83 if (not s.allOwnedElements() -> exists(g | g.
84 oclIsTypeOf(UML2!Generalization))) {
85 c09Ops -> append(thisModule.NewOperation(m.name, c09Name, s))

;
86 }
87 -- otherwise add operation to model, in case it doesn’t exist

yet
88 else if (UML2!Operation -> allInstancesFrom(’INOUT’) -> select(o

| o.
89 owner = OclUndefined and o.ownedComment -> exists(oc | oc.

body =
90 c09Name)) -> isEmpty()) {
91 thisModule.NewOperation(m.name, c09Name, s);
92 }
93 } -- get all messages for constraint expression
94 c09Elements <- thisModule.getActivitysByClass(s);
95

96 -- add constraint
97 -- for each Activity, build constraint
98 if (c09Elements -> size() > 0) {
99 c09Expr <- ’self.inheritedMember->select(oclIsTypeOf(Operation))->

union(self.’

Appendix A. Source Code 77

100 + ’ownedOperation)->exists(name=\’’ + c09Elements.first().
name +

101 ’\’)’;
102

103 c09Elements <- c09Elements -> subSequence(2, c09Elements -> size()
);

104 for (o in c09Elements) {
105 c09Expr <- c09Expr.concat(’ and self.’ +
106 ’inheritedMember->select(oclIsTypeOf(Operation))->union(

self.’
107 + ’ownedOperation)->exists(name=\’’ + o.name + ’\’)’);
108 } -- add constraint to class
109 if (not s.allOwnedElements() -> select(c | c.
110 oclIsTypeOf(UML2!Constraint)) -> exists(c | c.name = c09Name)

and
111 s.oclIsTypeOf(UML2!Class)) {
112 thisModule.NewOwnedRule(s, c09Name, c09Expr, ’OCL’);
113 }
114 }
115 }
116 }

Listing A.10: Scenario09.atl

A.3 Programmatical Launch

1 package at.jku.uml2uml.launcher;
2

3 import java.io.FileNotFoundException;
4 import java.io.IOException;
5 import java.util.Collections;
6

7 import org.eclipse.emf.common.util.URI;
8 import org.eclipse.emf.ecore.resource.Resource;
9 import org.eclipse.emf.ecore.resource.ResourceSet;

10 import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl;
11 import org.eclipse.m2m.atl.core.ATLCoreException;
12 import org.eclipse.m2m.atl.emftvm.EmftvmFactory;
13 import org.eclipse.m2m.atl.emftvm.ExecEnv;
14 import org.eclipse.m2m.atl.emftvm.Metamodel;
15 import org.eclipse.m2m.atl.emftvm.Model;
16 import org.eclipse.m2m.atl.emftvm.impl.resource.EMFTVMResourceFactoryImpl

;
17 import org.eclipse.m2m.atl.emftvm.util.DefaultModuleResolver;
18 import org.eclipse.m2m.atl.emftvm.util.ModuleResolver;
19 import org.eclipse.m2m.atl.emftvm.util.TimingData;
20 import org.eclipse.uml2.uml.UMLPackage;
21 import org.eclipse.uml2.uml.internal.resource.UMLResourceFactoryImpl;
22

23 /*
24 * (c) Stefan Luger 2013
25 * ATL EMFTVM programmatical launch configuration launcher class.
26 */
27 public class EMFTVMLauncher {
28 private String metaModelName, sourceModelName, targetModelName,
29 sourceTargetModelName;
30 private String metaModelPath, sourceModelPath, targetModelPath,
31 sourceTargetModelPath;
32 private String moduleName, modulePath;
33 private Metamodel metaModel;
34 private Model sourceModel, targetModel, sourceTargetModel;
35

36 ResourceSet emftvmRs;
37 ResourceSet umlRs;
38 ExecEnv env;
39 ModuleResolver mr;
40 TimingData td;
41

42 /*

Appendix A. Source Code 78

43 * the constructor provides all necessary transformation settings
44 */
45 public EMFTVMLauncher(String metaModelName, String sourceModelName,
46 String targetModelName, String sourceTargetModelName,
47 String metaModelPath, String sourceModelPath,
48 String targetModelPath, String sourceTargetModelPath,
49 String moduleName, String modulePath) {
50 // initialize UML resource
51 initUMLResource();
52 initEMFTVMResource();
53

54 // initialize execution environment
55 initExecutionEnvironment();
56

57 // initialize model names and file paths
58 initTransformation(metaModelName, sourceModelName, targetModelName,
59 sourceTargetModelName, metaModelPath, sourceModelPath,
60 targetModelPath, sourceTargetModelPath, moduleName, modulePath);
61

62 // instantiate EMFTVM related objects
63 mr = new DefaultModuleResolver(this.modulePath, new ResourceSetImpl())

;
64 td = new TimingData();
65 }
66

67 /*
68 * initialize UML resource
69 */
70 private void initUMLResource() {
71 Resource.Factory.Registry.INSTANCE.getExtensionToFactoryMap().put(
72 UMLPackage.eNS_URI, UMLPackage.eINSTANCE);
73 this.umlRs = new ResourceSetImpl();
74 this.umlRs.getResourceFactoryRegistry().getExtensionToFactoryMap()
75 .put("uml", new UMLResourceFactoryImpl());
76 }
77

78 /*
79 * initialize EMFTVM resource
80 */
81 private void initEMFTVMResource() {
82 Resource.Factory.Registry.INSTANCE.getExtensionToFactoryMap().put(
83 "emftvm", new EMFTVMResourceFactoryImpl());
84 this.emftvmRs = new ResourceSetImpl();
85 this.emftvmRs.getResourceFactoryRegistry().getExtensionToFactoryMap()
86 .put("emftvm", new EMFTVMResourceFactoryImpl());
87 }
88

89 /*
90 * initialize execution environment
91 */
92 private void initExecutionEnvironment() {
93 env = EmftvmFactory.eINSTANCE.createExecEnv();
94 }
95

96 /*
97 * initialize model names and file paths
98 */
99 private void initTransformation(String metaModelName,

100 String sourceModelName, String targetModelName,
101 String sourceTargetModelName, String metaModelPath,
102 String sourceModelPath, String targetModelPath,
103 String sourceTargetModelPath, String moduleName, String modulePath)

{
104 this.metaModelName = metaModelName;
105 this.sourceModelName = sourceModelName;
106 this.targetModelName = targetModelName;
107 this.sourceTargetModelName = sourceTargetModelName;
108 this.metaModelPath = metaModelPath;
109 this.sourceModelPath = sourceModelPath;
110 this.targetModelPath = targetModelPath;
111 this.sourceTargetModelPath = sourceTargetModelPath;
112 this.moduleName = moduleName;
113 this.modulePath = modulePath;
114 }

Appendix A. Source Code 79

115

116 /*
117 * load/inject models
118 */
119 private void loadModels() throws FileNotFoundException {
120 // load meta model
121 metaModel = EmftvmFactory.eINSTANCE.createMetamodel();
122 metaModel.setResource(umlRs.getResource(URI.createURI(metaModelPath),
123 true));
124 env.registerMetaModel(metaModelName, metaModel);
125

126 // load source model
127 // sourceModel = EmftvmFactory.eINSTANCE.createModel();
128 // sourceModel.setResource(umlRs.getResource(
129 // URI.createURI(sourceModelPath), true));
130 // env.registerInputModel(sourceModelName, sourceModel);
131

132 // load target model
133 if (targetModelPath != "") {
134 targetModel = EmftvmFactory.eINSTANCE.createModel();
135 targetModel.setResource(umlRs.createResource(URI
136 .createFileURI(targetModelPath)));
137 env.registerOutputModel(targetModelName, targetModel);
138 }
139 // load optional combined source and target model
140 sourceTargetModel = EmftvmFactory.eINSTANCE.createModel();
141 sourceTargetModel.setResource(umlRs.getResource(
142 URI.createURI(sourceTargetModelPath), true));
143 env.registerInOutModel(sourceTargetModelName, sourceTargetModel);
144

145 env.loadModule(mr, moduleName);
146 td.finishLoading();
147 }
148

149 /*
150 * save models
151 */
152 private void saveModels() throws ATLCoreException {
153 try {
154 // targetModel.getResource().save(Collections.emptyMap());
155

156 if (targetModelPath != "")
157 sourceTargetModel.getResource().setURI(
158 URI.createURI(targetModelPath));
159

160 sourceTargetModel.getResource().save(Collections.emptyMap());
161 } catch (IOException e) {
162 e.printStackTrace();
163 }
164 }
165

166 /*
167 * launch transformation
168 */
169 public void launch() {
170 try {
171 loadModels();
172 env.run(td);
173 td.finish();
174 saveModels();
175 System.out.println("TEST: model transformation successful ...");
176 } catch (FileNotFoundException e) {
177 e.printStackTrace();
178 } catch (ATLCoreException e) {
179 e.printStackTrace();
180 }
181 }
182 }

Listing A.11: EMFTVMLauncher.java

Appendix A. Source Code 80

A.4 GUI Launch

1 package at.jku.uml2uml.gui;
2

3 import java.io.File;
4 import org.eclipse.swt.SWT;
5 import org.eclipse.swt.events.*;
6 import org.eclipse.swt.graphics.Color;
7 import org.eclipse.swt.layout.*;
8 import org.eclipse.swt.widgets.*;
9

10 import at.jku.uml2uml.launcher.EMFTVMLauncher;
11

12 /*
13 * (c) Stefan Luger 2013
14 * A simple graphical user interface for a more convenient transformation

execution.
15 * Simply choose from one of the available transformation scenarios and

specify the in/out- as well as an optional target model.
16 * Filepaths only work for Windows systems! In case of using Unix, you

have to change file separators.
17 */
18

19 public class Window {
20 Display display = new Display();
21 Shell shell = new Shell(display, SWT.CLOSE | SWT.TITLE | SWT.MIN);
22 String workDir = (String) System.getProperty("user.dir").subSequence(0,
23 System.getProperty("user.dir").lastIndexOf(’\\’));
24

25 public Window() {
26 init();
27 shell.pack();
28 shell.setSize(600, 175);
29 shell.open();
30

31 while (!shell.isDisposed()) {
32 if (!display.readAndDispatch()) {
33 display.sleep();
34 }
35 }
36 display.dispose();
37 }
38

39 private void init() {
40 shell.setText("UML2UML Transformation");
41 shell.setLayout(new GridLayout(4, false));
42 GridData data = new GridData(GridData.FILL_HORIZONTAL);
43

44 // metamodel
45 Label labelMM = new Label(shell, SWT.NONE);
46 labelMM.setText("Metamodel name:");
47 labelMM.setToolTipText("The metamodel used for the transformation.");
48 final Text textMM = new Text(shell, SWT.NONE);
49 textMM.setText("UML2");
50 textMM.setEditable(false);
51 textMM.setEnabled(false);
52 final Text textMMPath = new Text(shell, SWT.NONE);
53 textMMPath.setText("http://www.eclipse.org/uml2/4.0.0/UML");
54 textMMPath.setEditable(false);
55 textMMPath.setEnabled(false);
56 Label labelMMPH = new Label(shell, SWT.NONE);
57 labelMMPH.setVisible(false);
58

59 // module
60 Label labelModule = new Label(shell, SWT.NONE);
61 labelModule.setText("Module name:");
62 labelModule
63 .setToolTipText("The ATL module file (*.atl) which contains the

transformation rules.");
64 final Text textModule = new Text(shell, SWT.NONE);
65 textModule.setEditable(false);

Appendix A. Source Code 81

66 textModule.setEnabled(false);
67 final Text textModulePath = new Text(shell, SWT.NONE);
68 textModulePath.setLayoutData(data);
69 textModulePath.setEditable(true);
70 Button buttonModule = new Button(shell, SWT.PUSH);
71 buttonModule.setText("Browse");
72 buttonModule.addSelectionListener(new SelectionAdapter() {
73 public void widgetSelected(SelectionEvent e) {
74 FileDialog dialog = new FileDialog(shell, SWT.NULL);
75 String[] ext = { "*.atl" };
76 dialog.setFilterExtensions(ext);
77 dialog.setFilterPath("../Transformations/inplace/");
78 String path = dialog.open();
79 if (path != null) {
80 File file = new File(path);
81 if (file.isFile()) {
82 textModulePath.setText(".."
83 + file.getParent().substring(workDir.length())
84 .replace(’\\’, ’/’) + ’/’);
85 textModule.setText(file.getName().substring(0,
86 file.getName().lastIndexOf(’.’)));
87 } else
88 textModulePath.setText("");
89 }
90 }
91 });
92

93 // in/out model
94 Label labelSTM = new Label(shell, SWT.NONE);
95 labelSTM.setText("In/Out model name:");
96 labelSTM.setToolTipText("The UML file (*.uml) which will be

transformed by the module specified above.");
97 final Text textSTM = new Text(shell, SWT.NONE);
98 textSTM.setText("INOUT");
99 textSTM.setEditable(false);

100 textSTM.setEnabled(false);
101 final Text textSTMPath = new Text(shell, SWT.NONE);
102 // textSTMPath.setText("");
103 textSTMPath.setLayoutData(data);
104 textSTMPath.setEditable(true);
105 Button buttonSTM = new Button(shell, SWT.PUSH);
106 buttonSTM.setText("Browse");
107 buttonSTM.addSelectionListener(new SelectionAdapter() {
108 public void widgetSelected(SelectionEvent e) {
109 FileDialog dialog = new FileDialog(shell, SWT.NULL);
110 String[] ext = { "*.uml" };
111 dialog.setFilterExtensions(ext);
112 dialog.setFilterPath("../Models/papyrus/models/");
113 String path = dialog.open();
114 if (path != null) {
115 File file = new File(path);
116 if (file.isFile())
117 textSTMPath.setText(".."
118 + file.getAbsolutePath()
119 .substring(workDir.length())
120 .replace(’\\’, ’/’));
121 else
122 textSTMPath.setText("");
123 }
124 }
125 });
126

127 // target model
128 Label labelTarget = new Label(shell, SWT.NONE);
129 labelTarget.setText("Save as*:");
130 labelTarget
131 .setToolTipText("Optionally saving the target model as a different

file (*.uml) to prohibit overwriting the In/Out model file.\nIn
order to overwrite the In/Out model file, leave no space

(\"\").");
132 final Text textTarget = new Text(shell, SWT.NONE);
133 textTarget.setEditable(false);
134 textTarget.setEnabled(false);
135 final Text textTargetPath = new Text(shell, SWT.NONE);

Appendix A. Source Code 82

136 textTargetPath.setLayoutData(data);
137 textTargetPath.setEditable(true);
138 Button buttonTarget = new Button(shell, SWT.PUSH);
139 buttonTarget.setText("Browse");
140 buttonTarget.addSelectionListener(new SelectionAdapter() {
141 public void widgetSelected(SelectionEvent e) {
142 FileDialog dialog = new FileDialog(shell, SWT.NULL);
143 String[] ext = { "*.uml" };
144 dialog.setFilterExtensions(ext);
145 dialog.setFilterPath("../Models/papyrus/models/");
146 String path = dialog.open();
147 if (path != null) {
148 File file = new File(path);
149 if (file.isFile()) {
150 textTargetPath.setText(".."
151 + file.getAbsolutePath()
152 .substring(workDir.length())
153 .replace(’\\’, ’/’));
154 } else
155 textTargetPath.setText("");
156 }
157 }
158 });
159

160 Button buttonTransform = new Button(shell, SWT.PUSH);
161 buttonTransform
162 .setBackground(new Color(Display.getCurrent(), 0, 255, 0));
163 buttonTransform.setText("Transform");
164 buttonTransform.setToolTipText("Press to conduct transformation.");
165 buttonTransform.addSelectionListener(new SelectionAdapter() {
166 public void widgetSelected(SelectionEvent e) {
167 try {
168 new EMFTVMLauncher(textMM.getText(), "IN", "OUT", textSTM
169 .getText(), textMMPath.getText(), "",
170 textTargetPath.getText(), textSTMPath.getText(),
171 textModule.getText(), textModulePath.getText())
172 .launch();
173 } catch (Exception e2) {
174 System.err
175 .println("ERROR: Make sure the right ATL module and filepaths

are specified correctly! "
176 + e2);
177 }
178

179 }
180 });
181

182 Label labelPH = new Label(shell, SWT.NONE);
183 labelPH.setVisible(false);
184

185 Text textInfo = new Text(shell, SWT.NONE);
186 textInfo.setEnabled(false);
187 textInfo.setText("Transformation debug information is displayed on

console.");
188 }
189

190 public static void main(String[] args) {
191 new Window();
192 }
193 }

Listing A.12: Window.java

Bibliography

[1] Eclipse Foundation, Inc., “ATL/Concepts,” July 2012. [Online]. Available:

http://wiki.eclipse.org/ATL/Concepts

[2] Eclipse Foundation, Inc., “ATL/User Guide - The ATL Language,” April 2013.

[Online]. Available: http://wiki.eclipse.org/ATL/EMFTVM

[3] Eclipse Foundation, Inc., “ATL/EMFTVM,” November 2012. [Online]. Available:

http://wiki.eclipse.org/ATL/User Guide - The ATL Language

[4] D. Schmidt, “Guest Editor’s Introduction: Model-driven Engineering,” Computer,

vol. 39, no. 2, pp. 25–31, 2006.

[5] S. Sendall and W. Kozaczynski, “Model Transformation: The Heart and Soul of

Model-driven Software Development,” Software, IEEE, vol. 20, no. 5, pp. 42–45, 2003.

[6] J. Bézivin, “Model-driven Engineering: An Emerging Technical Space,” in Generative

and Transformational Techniques in Software Engineering. Springer, 2006, pp. 36–64.

[7] Object Management Group, “OMG Object Constraint Language (OCL),” January

2012. [Online]. Available: http://www.omg.org/spec/OCL/2.3.1/

[8] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez, “ATL: a QVT-like

Transformation Language,” in Companion to the 21st ACM SIGPLAN Symposium on

Object-oriented Programming Systems, Languages, and Applications, ser. OOPSLA

’06. New York, NY, USA: ACM, 2006, pp. 719–720.

[9] F. Jouault, F. Allilaire, Bézivin., and I. Kurtev, “ATL: A Model Transformation Tool,”

Science of Computer Programming, vol. 72, no. 12, pp. 31–39, 2008.

[10] Object Management Group, “Meta Object Facility (MOF) 2.0 Query/View/-

Transformation Specification,” January 2011. [Online]. Available: http:

//www.omg.org/spec/QVT/1.1/

83

http://wiki.eclipse.org/ATL/Concepts
http://wiki.eclipse.org/ATL/EMFTVM
http://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/QVT/1.1/

Appendix A. BIBLIOGRAPHY 84

[11] M. Tisi, S. Mart́ınez, F. Jouault, and J. Cabot, “Refining Models with Rule-based

Model Transformations,” INRIA, Research Report RR-7582, Mar. 2011.

[12] Object Management Group, “OMG Unified Modeling LanguageTM(OMG UML),

Superstructure,” August 2011. [Online]. Available: http://www.omg.org/spec/UML/

2.4.1/Superstructure

[13] Object Management Group, “OMG Unified Modeling LanguageTM(OMG UML),

Infrastructure,” August 2011. [Online]. Available: http://www.omg.org/spec/UML/

2.4.1/Infrastructure/

[14] International Organization for Standardization, “ISO/IEC 19501:2005,” Jan-

uary 2005. [Online]. Available: http://www.iso.org/iso/home/store/catalogue tc/

catalogue detail.htm?csnumber=32620

[15] Object Management Group, “OMG Meta Object Facility (MOF) Core Specification,”

June 2013. [Online]. Available: http://www.omg.org/spec/MOF/2.4.1

[16] A. Egyed, “UML/Analyzer: A Tool for the Instant Consistency Checking of UML

Models,” in Software Engineering, 2007. ICSE 2007. 29th International Conference

on, 2007, pp. 793–796.

[17] A. Reder and A. Egyed, “Model/analyzer: A Tool for Detecting, Visualizing and

Fixing Design Errors in UML,” in Proceedings of the IEEE/ACM International Con-

ference on Automated Software Engineering, ser. ASE ’10. New York, NY, USA:

ACM, 2010, pp. 347–348.

[18] Eclipse Foundation, Inc., “ATL/Developer Guide,” August 2012. [Online]. Available:

http://wiki.eclipse.org/ATL/Developer Guide

[19] Eclipse Foundation, Inc., “ATL/User Guide - Overview of the Atlas Transformation

Language,” July 2012. [Online]. Available: http://wiki.eclipse.org/ATL/User Guide

- Overview of the Atlas Transformation Language

[20] K. Czarnecki and S. Helsen, “Classification of Model Transformation Approaches,” in

Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context

of the Model Driven Architecture, vol. 45, no. 3, 2003, pp. 1–17.

http://www.omg.org/spec/UML/2.4.1/Superstructure
http://www.omg.org/spec/UML/2.4.1/Superstructure
http://www.omg.org/spec/UML/2.4.1/Infrastructure/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=32620
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=32620
http://www.omg.org/spec/MOF/2.4.1
http://wiki.eclipse.org/ATL/Developer_Guide
http://wiki.eclipse.org/ATL/User_Guide_-_Overview_of_the_Atlas_Transformation_Language
http://wiki.eclipse.org/ATL/User_Guide_-_Overview_of_the_Atlas_Transformation_Language

Appendix A. BIBLIOGRAPHY 85

[21] F. Jouault and I. Kurtev, “On the Architectural Alignment of ATL and QVT,” in

Proceedings of the 2006 ACM Symposium on Applied Computing. ACM, 2006, pp.

1188–1195.

[22] M. Amstel, S. Bosems, I. Kurtev, and L. Ferreira Pires, “Performance in Model Trans-

formations: Experiments with ATL and QVT,” in Theory and Practice of Model

Transformations, ser. Lecture Notes in Computer Science, J. Cabot and E. Visser,

Eds. Springer Berlin Heidelberg, 2011, vol. 6707, pp. 198–212.

[23] A. Demuth, R. Lopez-Herrejon, and A. Egyed, “Constraint-driven Modeling through

Transformation,” in Proceedings of the 5th international conference on Theory and

Practice of Model Transformations, ser. ICMT’12. Berlin, Heidelberg: Springer-

Verlag, 2012, pp. 248–263.

[24] A. Reder and A. Egyed, “Computing Repair Trees for Resolving Inconsistencies in

Design Models,” in Automated Software Engineering (ASE), 2012 Proceedings of the

27th IEEE/ACM International Conference on, 2012, pp. 220–229.

[25] J. Bézivin and F. Jouault, “Using ATL for Checking Models,” Electron. Notes Theor.

Comput. Sci., vol. 152, pp. 69–81, Mar. 2006.

[26] X. Liu, “Identification and Check of Inconsistencies between UML Diagrams,” Journal

of Software Engineering and Applications, vol. 6, no. 3B, pp. 73–77, 2013.

[27] A. Egyed, “Fixing Inconsistencies in UML Design Models,” in Software Engineering,

2007. ICSE 2007. 29th International Conference on, 2007, pp. 292–301.

[28] A. Egyed, E. Letier, and A. Finkelstein, “Generating and Evaluating Choices for

Fixing Inconsistencies in UML Design Models,” in Automated Software Engineering,

2008. ASE 2008. 23rd IEEE/ACM International Conference on, 2008, pp. 99–108.

[29] J. Rivera, D. Ruiz-Gonzalez, F. Lopez-Romero, J. Bautista, and A. Vallecillo, “Or-

chestrating ATL Model Transformations,” Proc. of MtATL, pp. 34–46, 2009.

	Sworn Declaration
	Abstract
	List of Figures
	List of Listings
	Introduction
	MDE Technologies
	UML
	ATL
	EMFTVM

	OCL

	Motivating Example
	Implementation and Discussion
	Constraint-driven Scenarios
	Message - Operation
	Lifeline - Class
	Transition - Operation
	Message Sequence - Transition Sequence
	Message - Association
	Statemachine - Class
	Statemachine - Pseudostate
	Association - Message
	Activity - Operation

	Usage Documentation
	Prerequisites
	Project Setup
	Execution
	Validation

	Related Work
	Conclusions and Future Work
	Source Code
	Sequence to Class Diagram
	Constraint-driven Scenarios
	Programmatical Launch
	GUI Launch

	Bibliography

