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Figure 1: This workflow visualization illustrates a biomedical processing pipeline in the domain of cancer research. The visual building
blocks for this visualization comprise nodes (representing processing tools) and links (connecting these tools to each other). This visualization
has its in- and output files (left and right to nodes) expanded to provide detailed information on demand. A clean layout, basic interaction
techniques (e.g. drag, zoom, pan, etc.) or even more advanced features like path highlighting, let analysts examine interesting parts within
the processing pipeline while keeping an overview on it.

Abstract

In the field of biomedical research, domain experts have to manage
the complexity of heterogeneous and large data processed within
analysis pipelines. Their goal is to get insights through (intermedi-
ate) results conveyed by the workflows representing the pipelines.
Obviously, when analyzing biomedical data (such as blood samples
taken from patients), the information is stored in raw text formats
and often too big to be handled. Scientific workflows consist of
tools with each of them defining their own experiment execution pa-
rameters. Because of the vast amount of data being processed, sim-
ply labeling the tools of a workflow (Nodes) and the IO-file stream
connecting nodes (Links) would cause too much textual informa-
tion. The Refinery Platform (Refinery) - developed by the Park Lab
in collaboration with the Hide Lab in Harvard - aims to collect, pro-
cess and most importantly visualize biomedical workflows. Their
former visualization was based on a Python-based generated im-
age which does not fulfill its initial purpose any more. In this re-
port, we present a workflow visualization based on the Data-Driven
Documents (D3.js) JavaScript library that provides level of detail,
encodes multidimensional information through compact glyph de-
sign and provides necessary interaction features to satisfy the needs
of domain experts working with biomedical data. The analyst’s
requirements are then formalized as user tasks. These tasks are
looked at concerning visual encoding and design choices as well as
implementation and limitations. The workflow visualization is in-
tegrated into Refinery and showcased by the use of complex work-
flows (provided by the Galaxy Project). Cancer researchers who
are working with processing pipelines on a regular basis will bene-
fit from the visualization presented.
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1 Introduction

Domain experts in Genomics have to study and analyze a huge
amount of data (e.g. genetic information - in this context mostly
taken from patients) in order to determine a patient’s risk for a spe-
cific cancer type. Conventionally this happens with the support of
so called analysis pipelines where heterogeneous data (e.g. derived
from tissue samples) is carried through the steps of analysis tools.
Basically and very simply said, one could define a tool as follows:
A tool’s input files are processed by a variety of molecular bio-
logical analysis calculations. The outcome is then represented by
one or more files again that are in turn the input for the next tool
in the predefined pipeline. [Gehlenborg 2012; Gehlenborg 2013b;
Gehlenborg 2013a]

This report focuses on the technical aspect of building an interac-
tive workflow visualization operating on in- and output files within
an analysis pipeline. In the end, the stereotypes reading this report
are most likely more familiar in the domain of Computer than in
Life Sciences. So we literally could define this processing step as
a molecular biological data processing Black Box - or in the graph
processing domain, we would simply use the term Node containing
in- and output ports. Links connect these nodes, and in conjunc-
tion, a directed graph is shaped. To fit the behavior of an analy-
sis pipeline, the graph governs the execution order of tools step by
step as workflow. The execution of this workflow then provides in-
sights to domain experts through analytical results. The motivation



for computer scientists in the fields of Bioinformatics is to develop
a state of the art visualization which helps interpret the outcomes
as well as the intermediate results during the workflow execution
phase.

The Refinery Platform1 or in short Refinery is a project which is
currently developed by the Park Lab 2 at Harvard Medical School
in collaboration with the Hide Lab3 at Harvard School of Public
Health that aims to collect, process as well as visualize heteroge-
neous data within biomedical Galaxy4-based workflows (see Figure
2). The workflows are manually created in Galaxy and available in
the JavaScript Object Notation (JSON) format inside Refinery. The
platform also serves as exchange hub among user groups where
authorized users can share their workflows annotated with a vast
amount of files of molecular biological samples including meta-
data.

Figure 2: Refinery - Galaxy - Workflow Visualization [Gehlenborg
2013b].

Refinery still is in development phase and requires a new and state
of the art workflow visualization, as their Python-based prototype
does not satisfy the needs of their early user-base anymore. Care-
fully speaking, the former visualization was imported as an image
and does not cover any interaction possibilities, level of detail, an
appropriate layout - nor does it represent the actual workflow effec-
tively. Figure 3 shows issues such as overlapping labels or the lack
of different glyphs being used. [Gehlenborg 2012; Gehlenborg
2013b; Gehlenborg 2013a]

In this work, we propose an interactive workflow visualization in-
tegrated into the Refinery Platform operating on biomedical data
stored in the JSON file format. The issues pointed out in the para-
graph above are only a few among many. User-driven tasks have
to be elaborated to consider these problems as well as to discover
additional requirements.

1.1 User Tasks

Basically, tasks are categorized into five different groups: T1 con-
siders an intuitive workflow representation; T2 handles detailed in-
formation on demand; T3 justifies a clean workflow layout; T4 is
all about interaction principles; T5 focuses on examination of sub-
structures within the workflow. These tasks will guide the reader
through the report and are referred to as capital letter T followed by
the task identifier number.

T1: The processing pipeline (technically also referred to as work-
flow) should be represented as a directed node link diagram. Given

1http://refinery-platform.org/.
2http://compbio.med.harvard.edu/
3http://refinery-platform.org/
4http://galaxyproject.org/

the information on direction of links due to left-aligned node place-
ment, analysts should have no problems interpreting the order of
steps in the workflow.

T2.1: It is not desired to have every tool and its corresponding files
visible permanently. In case the analyst wants to abstract the work-
flow on a level where only nodes and links are shown, visibility
control for showing and hiding files must be given to the analyst.

T2.2: Text labels which would exceed the dimensions of their en-
capsulating shapes have to be cut and shown in tooltips in full
length.

T2.3: Analysts do not want to deal with a possible large number of
tool parameters inside the visualization. Show a complete overview
of the selected node and its tool parameters outside the visualization
canvas.

T3: For a clean overview, the workflow’s layout should be grid-
based to maintain a minimal distance between nodes and to point
out the graph’s topology more consistently.

T4.1: Analysts should be able to reposition nodes within the visu-
alization canvas. Because the workflow layout is generated auto-
matically, nodes might not be placed ideal for every possible graph
topology. Therefore, the analyst should be able to compensate for
it manually.

T4.2: For very large workflows, allow analysts to get detailed infor-
mation on demand while always keeping an overview and resetting
their view.

T4.3: Analysts want to be able to switch back and forth between the
originally created layout in Galaxy and the automatically generated
Refinery layout.

T5: Analysts want to focus on a particular path in the processing
pipeline to get insights on involved tools and files.

Before we look at similar work in Section 2, the report’s contin-
uing structure is given. Section 3 gives a brief introduction about
the project’s programming environment and the integration into the
Refinery Platform. Section 4 elaborates visual encoding through
glyph design. In Section 5 we deliver some insights concerning the
task implementation as well as limitations. To conclude, the visual-
ization as a whole gets presented. Section 6 sums up the report and
discusses future work.

2 Related Work

2.1 Scientific Workflow Visualization

The success of a good visual representation for workflows heavily
depends on using the appropriate shapes in conjunction with posi-
tion, size, color, value, orientation and even texture (referred to as
visual variables, and in combination as glyph). We review one ap-
proach and one system which significantly focuses on visualizing
scientific workflows.

Maguire et al. [Maguire et al. 2012] illustrate the necessity of
generating taxonomy based glyphs to encode multidimensional in-
formation. In particular, the categorization step is automated and
each dimension maps to a different glyph design. Whereas the ap-
proach of automatic categorization and generation would go be-
yond the scope of this work, a mapping of similar visualization el-
ements to related visual variables is indeed of importance. Anchor
elements, which provide interaction tasks, clearly should stand out
among other elements to make them the obvious choice for interac-
tion tasks.

http://refinery-platform.org/
http://compbio.med.harvard.edu/
http://refinery-platform.org/
http://galaxyproject.org/


Figure 3: Former Python-based Workflow Visualization was loaded and displayed in the format of Portable Network Graphics (PNG)
[Gehlenborg 2014].

Galaxy editor is a workflow creation framework within the Galaxy
framework. Concerning our work, it provides first hints on impor-
tant elements for our workflow design. In particular, elements such
as nodes, links and files - which are the basic building blocks of the
workflow - are labeled and shown. We want to encode a part of the
information into distinct elements to hide some of the initial com-
plexity when examining the structure of the workflow itself. Only
if one is interested in a higher level of detail, one should be able to
trigger additional visual elements on demand. [The Galaxy Team
2014]

2.2 Scientific Workflow Systems

In this work, a workflow visualization w.r.t. to the Galaxy format
was built. Similar to Galaxy, many scientific workflow systems
emerged over the past decade. Besides introducing Galaxy in Sec-
tion 3.2, we want to take a brief look onto its competitors or prede-
cessors.

In addition to the visualization of workfows, such systems like Ke-
pler [Altintas et al. 2004] (created in 2002) provide accessible
workflow creation tools, execution, monitoring support and record
tool parameters over time for potential reruns to preserve repro-
ducibility. Storing meta-data (provenance data) for large, com-
plex and heterogeneous data requires a scalable and performance-
oriented infrastructure and data model. Kepler builds upon nodes
and links - exactly as a workflow is visualized in this work, where
the former are referred to as actors and the latter as channels. Kepler
also supports distributed execution over the web and integration of
WSDL-defined web services.

In 2004, the first version of Taverna [Missier et al. 2010] was
launched. Driven by the goals which led to the creation of Ke-
pler, it is best known for its application to many sub-domains of the
Life Sciences. Similar to Kepler, a workflow in Taverna consists
of processors connected by data dependencies links. It is capable
execution, storing provenance data and integrating web services as
well. Even R, Java or sub-workflows can be interpreted. To ex-
tend Kepler’s scalability, Taverna creates concurrent threads via the
Parallelise layer. It is licensed under the GNU Lesser General Pub-
lic License (LGPL), hence community contributions do not come
short. The creation of OnlineHPC5 serves as example, making an
accessible workflow creation editor available to the user base.

The last well know workflow management system we discuss is
VisTrails [Bavoil et al. 2005]. It was developed in 2007 and so

5http://onlinehpc.com/site/main

the latest among the systems introduced in this section. The key
to VisTrail is its visualization trail, which stores provenance data
about steps executed in the visualization pipeline. The loose cou-
pled architecture separates the execution instance and the pipeline
specification. Redundant operations are cached which save signifi-
cant processing power when needed to run again (e.g. to compare
multiple views of visualizations). On integrating VisTrails in vari-
ous visualization applications, it can point out different parameter
configurations over time in visualization pipelines. This approach is
based on the visualization being generated via a step-by-step work-
flow itself and therefore is more uniform and different than the sys-
tems mentioned above. Concerning this work, the idea of a graph-
based visualization pipeline and the ability to reuse cached assets
can speed up the rendering process dramatically when dealing with
very large amounts of links and nodes.

In Section 1 we have introduced Refinery and the goals it aims to
achieve. In this section, we took a deeper look into scientific work-
flow systems and mentioned Galaxy, which we will explain in more
detail in the next section.

3 Environment and Architecture

Now, an overview of the components surrounding the proposed vi-
sualization will be given (see Figure 4).

3.1 Refinery

Technically, Refinery is a client server system that manages reposi-
tories for imports as well as exports. The biomedical samples stored
in these repositories are associated with in- and output files in the
processing pipelines (workflows) imported via a Galaxy connector
instance.

3.2 Galaxy

Looking at Figure 4, two logical pillars are left to discuss. Usu-
ally, workflows are created manually by domain experts. In Sec-
tion 1 we have looked at the node link representation those work-
flows are mostly visualized and also stored as. A node represents
a processing tool within the pipeline analysis. Normally, the au-
thor of a workflow makes use of differently behaving tools stored
in a workflow generation framework or suite and finally assemblies
them together via links - representing the file transactions along-
side the pipeline. On the one hand, further in-depth processes in-
side a tool (we recall the molecular biological data processing Black

http://onlinehpc.com/site/main


Figure 4: The technical view on the environment is separated into
three logical components: Refinery Visualization, Galaxy Work-
flows and Data Repositories [Gehlenborg 2013b].

Box) are basic knowledge of domain experts in molecular biology,
whereas the technical aspect of creating and integrating those tools
into a common framework describes the task of computer scientists.
Galaxy aims to combine those two worlds by providing a web in-
terface for performing accessible, reproducible and transparent ge-
nomic science. It enables analysts without computer programming
skills to build workflows within the editor. As Galaxy is built upon
the idea of creating custom and sharing tools (referred to as Galaxy
Tool Shed), workflow authors are able to take advantage of commu-
nity created open source content. [Goecks et al. 2010; Blankenberg
et al. 2001; Giardine et al. 2005]

Finally, Refinery connects to Galaxy via an API specification and
integrates the created workflow data.

3.3 Repositories

The third and most right component in Figure 4 comprises repos-
itories for raw data storage and query operations. Apache Solr6 is
used as full-text index and search engine. ISA-Tab7 handles addi-
tional meta-data and tracking information for provenance aspects
(when data changes over time). In particular, provenance data are
changes on in- or output files, workflow topology or tool parame-
ters configuration. PostgreSQL8, designed for the high amount of
data, manages Refinery’s data storage and query tasks.

3.4 D3.js

For the workflow visualization part, Refinery most importantly pro-
vides support for Data-Driven Documents (referred to as D3.js or
in short D3) 9 which is a web-based DOM-manipulating JavaScript
library and very suitable for visualizing directed graphs over the
web.

Originally it was developed by Mike Bostock in 2011 [Bostock
et al. 2011]. Since then, it continuously evolved, an active user base
emerged and therefore became more and more popular within the
domain of Information Visualization on the web. More accurately,

6http://lucene.apache.org/solr/
7http://isatab.sourceforge.net/
8http://www.postgresql.org/
9http://d3js.org/.

D3 manipulates Scalable Vector Graphics (SVG) elements and their
attributes based on selection statements. Encapsulated into the Hy-
pertext Markup Language (HTML), combined with Cascading Style
Sheets (CSS) and Bootstrap for modular design, Refinery provides
the latest front end technology required for D3. Workflow data it-
self is exported in the JSON format via the Galaxy API, for which
D3 offers a callback method to process. Additionally, one of the key
aspects of D3 is the rich feature set it offers for visualization pur-
poses. From canvas scaling, zoom and pan behavior to predefined
layouts, D3 facilitates important visualization development tasks
into a coherent and modular library. As layouts were mentioned,
D3 maps link and node data structures automatically through ref-
erencing the node identifiers into the link data structure. On top
of this, event handling supports interaction tasks on SVG elements
conveniently. With all that being said, D3 is the obvious choice
to fulfill the requirements specification of this practical work. Of
course, other visualization libraries exist (e.g. Prefuse10) but they
mostly are not applicable to the web environment or are not as flex-
ible as D3 is. [Bostock 2014]

If preferred, all above components excluding Galaxy are then
wrapped into a single environment containing a Virtual Machine via
Vagrant 11 For more information about setting up Refinery please
visit the Refinery documentation page12.

The report’s major focus lies on documenting the practical work
done concerning visual encoding, design choices and the develop-
ment process w.r.t. to best practices in the domain of Software En-
gineering. In the next two sections, we will first discuss the design
and second the implementation process focused on the user tasks
T1 - T4 specified in Section 1.1.

4 Visual Encoding

Generally speaking, visual design choices were strongly influ-
enced by the feedback from advisors during weekly one hour long
progress meetings. Given the fact that not only the perspective of
software engineers but also that of domain experts in the field of
Computational Genomics were involved, shortcomings considering
usability and interactivity aspects were tried to be minimized.

T1: We have introduced the characteristics of scientific workflows
and their components in Section 1. In [Maguire et al. 2012] glyphs
are presented as one of the most relevant elements when it comes
to workflow visualization development. During the early concept
design stage, a node was layouted as a simple rectangle containing
a label for its tool name. An example of an input node is shown in
Figure 5.

Figure 5: Collapsed node design (rectangle) containing a name
label in the center and an anchor (circle) representing the input
dataset file.

In general, a node is categorized of type input only then, if there
are no predecessors to the node - the node actually does not rep-
resent a process by a tool itself. Moreover, it represents the main
input dataset for the workflow, hence it is visualized without a filled

10http://prefuse.org
11http://www.vagrantup.com/.
12http://refinery-platform.readthedocs.org/
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http://www.postgresql.org/
http://d3js.org/
http://prefuse.org
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http://refinery-platform.readthedocs.org/


background. On the contrary, Figure 6 illustrates the simple node
design for usual node types in a workflow.

Figure 6: Collapsed node design (rectangle) containing node label
located in the center and an anchor (circles) representing in- and
output files for the node positioned left and right.

Having discussed the different node types, indeed one might argue
to visualize the input node as a single file similar to the nodes con-
taining in- and output files. With respect to a link connecting ex-
actly two nodes, this is not easy to achieve, as the name of the input
file usually matches to the input connection file. This only applies
to links between nodes, which at least have one predecessor. So
in this exceptional case, it could misguide the user - thinking both
file names connecting both nodes are literally the same file. There-
fore and because of the fact when the visualization is zoomed out
- which results in smaller rectangles and makes it more difficult to
interact with (e.g. dragging) - a rectangle the same size as of the
other nodes was applied.

Before we further extend the node layout, Links are left to dis-
cuss. Links regularly connect exactly two nodes and are drawn as
quadratic bezier curves. In comparison to straight lines, this results
in a cleaner view of the graph as a whole. Whereas straight lines
favor distinguishing connections for possible line crossings, bezier
curves enhance the perception of node order and the general direc-
tion in workflows.

T2.1: On adding in- and/or output files to the node (at first within
the boundaries of the node), available space became a major issue.
Although in [The Galaxy Team 2014] files were encapsulated into
the node too, we decided to add additional expand and collapse
interaction to the node element and move the file representation
outside to the left and right boundaries of a node. As a result, a
collapsed node looks clean and does not require that much space as
if all files were visible permanently (see Figure 5). In return, Figure
7 shows the node with its expanded file representation on the right
side.

Figure 7: Expanded node design (rectangle) showing the file in
collapsed view with the anchor moved to the right of the actual file
(slim rectangle).

So far the circles positioned left or right to the node were omitted.
In Figure 6, a node in its collapsed state is shown and introduces
another new design: First, the background is filled lightsteelblue to
better distinguish normal nodes from input nodes. Second, the cir-
cle to the right is filled steelblue, whereas the left one lightsteelblue.
Circles (also referred as anchors), signalize in- and output files (left
and right) and can be expanded through a click event on the cor-
responding anchor - the anchor then replicates itself and moves to
each file shown (see Figure 8). The other way around, the file rect-
angles are removed and the original anchor is faded in again. Spe-
cific output files, which are imported back to Refinery, are demon-
strated as steelblue anchors. Those files are renamed (stylized in
italic) to avoid naming conflicts in the whole workflow scope.

Figure 8: Expanded node design showing opened in- and output
files (slim rectangles) with their own file name label as well as dy-
namically generated anchors. Original anchors are hidden and dis-
abled during the detailed view.

T2.2: In order to help with additional on-demand information,
tooltips are added. In particular, a tooltip is required either for long
text occupying to much space w.r.t. to their encapsulating element
dimension or for renamed output files mentioned above. Whereas
Figure 9 and 10 show ordinary information about the cut text la-
bels, in Figure 11, the original name of the output file - which is
then imported back to Refinery - is listed in the third line.

Figure 9: Tooltip on hover interaction provides information about
id and name for the input connection between the predecessor and
current node.

Figure 10: Tooltip on hover interaction shows the full string of the
node name.

T2.3: Additional information about a tool in the workflow is avail-
able in the HTML table below the visualization canvas. Display-
ing all the information within the visualization canvas would cause
overlapping with the workflow itself. Therefore, a table contain-
ing additional tool parameters (see Figure 12) is placed below the
canvas. As the HTML page will grow in height, due the table oc-
cupying space, one should be able to show and hide it through a
toggle behavior.

T3: Although the Galaxy-imported workflow comes with a prede-
fined layout as shown in Figure 13, we decided to design a grid-
based graph layout. The Galaxy layout occasionally arrange nodes
in an unnatural way by not lining up the nodes linearly, although
they seem to be positioned in one straight line. Nodes arranged to
imaginary cells in the layout grid prevent these problems and fur-
ther distribute the workflow uniformly in the visualization canvas.
Visualization space has to be used up carefully. Especially when
dealing with larger workflows, the not uniformly expanded Galaxy
layout would result in a worse scaling factor applied when all nodes
of a workflow should be visible on screen at once. More details on
the algorithm and the implementation are explained in the corre-
sponding task description in Section 5.

Frequently described as key to success for a good visualization is
the presence of interactive tasks to be able to perform with.



Figure 12: Upon node selection, a HTML table is generated automatically and placed below the visualization canvas. As tool parameters
are of arbitrary hierarchy, nested tables will possibly get generated.

Figure 11: Tooltip on hover interaction presents additional at-
tribute information for attributes name, type and stored as.

Figure 13: Workflow Visualization based on the given Galaxy co-
ordinates.

T4.1: As the layout is generated automatically, it certainly can
not be optimized to consider every possible corner case for graph
topologies. Analysts want to have the opportunity to manually per-
form changes in order to increase or decrease space between nodes.
The solution to this requirement demands the ability to drag nodes.
No special visual design choices to nodes have to be applied. The
rectangular shape and fair size of nodes suits this task well.

T4.2: The visualization must provide general pan and zoom sup-
port. With pan functionality, one can handle very large workflows
while not displaying every node on screen at once. Nevertheless,
when a large workflow is loaded, the workflow should be scaled
to the available window space to give an initial overview. If this

Figure 14: Collapsed workflow visualization based on the Refinery
grid layout.

behavior is not anticipated, an option to zoom in or out must be
provided.

In Information Visualization, the zoom operation is categorized into
two different behaviors. Geometric zoom is a widespread solution,
where zooming only alters the scale of the canvas in focus. All ele-
ments inside the focus are then resized relatively to the current scale
factor. But as a result, text labels might get distorted or in general,
the SVG elements can get to small. A more sophisticated solution
is described by semantic zoom: Elements in the visualization might
not correspond to the current scale factor. This idea can be exploited
to display detailed information according to a specific zoom level,
while some elements preserve its size. A popular example is the
implementation of Google Maps 13. At a specific threshold, streets
and their text labels appear in the visualization. Whereas countries
grow in size, street paths and text labels maintain their stroke width.

As semantic zoom is not required for this work, geometric zoom
suffices.

T4.3: If desired, one can switch between Refinery and Galaxy lay-
out. The Galaxy layout reuses the visual assets and only differs in

13https://maps.google.com/

https://maps.google.com/


Figure 15: The visualization provides interactivity through zoom-
ing, panning, dragging single nodes and highlighting a path via
node selection. Quickly double-clicking the background screen
scales the whole workflow to the canvas space. Path highlight-
ing in detail: Selecting a node highlights the corresponding path
beginning with the current node and selecting all nodes and links
involved via backpropagation to the input dataset.

terms of its node placements.

T5: For analysts, it is essential to be able to examine intermediate
processing results alongside a path in the whole pipeline. Such path
can be highlighted on selecting a chosen node. Every node within
the path then should be highlighted with high color contrast to the
underlying workflow color style. The workflow visualization itself
conforms to a harmonious blue color style. Highlighting dyes the
path (including all predecessor branches) orange while increasing
the stroke width of link and node borders.

Having designed and discussed the visual elements, we will move
forward and look into interesting implementation details, criticize
limitations and discuss adaptions made in order to still satisfy the
requirements.

5 Implementation

Before we discuss the implementation concept in D3, it has to be
mentioned that the visualization comprises two major visual com-
ponents: the D3 visualization canvas and the HTML table. Both
components are tied together within a workflow HTML page - gen-
erated via the Django template language within an Python environ-
ment.

Section 3.4 already introduced D3. In order to fulfill the require-
ments elicit based on tasks, the general concept in D3 for creating,
updating or removing visual elements is followed. D3 binds (maps)
data to visual elements (e.g. a dataset containing five different val-
ues result in five bars with variable height within a barchart). In
this work, this dataset (not to get confused with datasets in pro-
cessing pipelines) describes the workflow imported from Galaxy.
The Galaxy workflow (which Refinery stores in JSON format)
can be loaded via a callback function in D3. As D3 is a DOM-
manipulating language, it does in fact create or alter SVG elements
through selection statements. For more details, a valuable tutorial14

by the author of D3, Mike Bostock himself, is referenced. But in
short, the following four steps describe the main concept for adding,
updating or removing SVG elements in D3 [Bostock 2014]:

1. The DOM elements to append to any SVG parent (e.g. svg
as root element) are selected via a class name.

2. The data(object) function then defines the container to
iterate through (e.g. object of any array type).

3. The enter() method specifies that the SVG elements ap-
pended are indeed being added. More possibilities for re-

14http://bost.ocks.org/mike/selection/

moval or update tasks are defined by the exit() and
update() method. The former removes all elements se-
lected, but only if there are existing elements selected in step
1. The latter updates DOM attributes of existing elements se-
lected in step 1.

4. Finally, append(element) appends the SVG element
element specified to the SVG parent (see step 1.) in each
iteration of object.

Using the procedure above, elements were created and grouped -
assembling the final node layout presented in the illustrated fig-
ures in Section 4. All node elements can be transformed via
translate(), scale() and rotate() and are scaled to a
fixed node width and height, which again depends on the current
scale factor applied through zooming and responsiveness. [Bo-
stock 2014]

Following the course of Section 4, we will focus on tasks to point
out interesting implementation details and limitations.

T1: In the JSON workflow file, each step field represents a node.
Further fields (e.g. name is used as the text label for a node) are
parsed and stored in an internal node link data structure within the
D3 callback function. Links are extracted by the file parameters
input, output and input connections which provide in-
formation about connecting nodes. Guided by the D3 SVG element
creation principles, nodes are grouped and appended to a SVG root
container. To preserve flexibility, element dimensions and margins
are scale dependent to each other. Links consist of SVG paths shap-
ing a bezier curve which are explained in detail in [Dahlström et al.
2014].

A challenging part of this task was to fit the text labels within the
node shape with fixed length. As this issue corresponds to T2.2, we
will discuss it here. Actually, D3 does not provide HTML stylized
line breaks and therefore were coded manually. Minor constraints
suggested to break labels at hyphens, whitespaces or after an fixed
amount of characters. Hence there are no intelligent linebreaks on
syllables. Nevertheless, tooltips cover the full text string. The same
procedure applies to in- and output files discussed in the next task.

T2.1: A key aspect to provide the ability to expand or collapse
either side of files, is to handle click events. In Section 4 anchors
were introduced as circles. These SVG circle elements provide on
click events to create replicated circles as well as in- or output files
represented as rectangles. File rectangles are centered in y-direction
of the node. In order to define the collapse event to the file anchors
which are not generated yet, D3 allows to chain select the potential
SVG element to make dynamic event handling possible.

T2.3: D3 is not suitable for displaying table-like content in its can-
vas, hence a HTML table seemed to be the best solution in order
display detailed node parameter information below the visualiza-
tion canvas. Each node has its table creation event applied. After
deselecting or clicking on the empty canvas, the table is deleted
again. A major challenge was to overcome the parsing task con-
taining parameters in arbitrary JSON hierarchy. We solved this is-
sue via recursive depth-first search (DFS) followed by appending
nested HTML tables to a table parent for each new layer of a pa-
rameters.

T3: For the grid layout, graph metrics are calculated before sepa-
rating the nodes into columns and rows (e.g. depth and width).

Figure 14 and 16 show the workflow visualized via grid layout al-
gorithm. Each node belongs to a specific column and row resulting
in a clean layouted workflow. If any node is expanded, the column
width grows accordingly, even if nodes in the same column exist
and are not expanded. This implementation has a minor drawback,

http://bost.ocks.org/mike/selection/


as the workflow is not minimized in space anymore. But in contrast
to the Galaxy layout, this approach results in significantly better
partitioned node placement. We present the algorithm in pseudo
code in Listing 1.

1.Iterate over column before row.
2.On branch:

3.Check successor nodes.
4.Grow of workflow width (vertically) -

add rows to provide space.
5.Distinct even or odd case.
6.For n or (n + 1) rows:

a) Add n/2 rows at row index - 1
b) Add n/2 rows at row index + 1

Listing 1: Grid-based graph layout.

Another limitation of the algorithm in its current state shows each
branch occupying an own row. In detail, the layout is processed
column-wise from left to right. If the current node starts a new
branch, depending on the successor nodes row index, a new empty
row is added after the current row index. For the case of an odd
amount of successor branches (e.g. three), the second branch would
succeed in the same row as the node starting the new branch. The
first branch is shifted by row index - 1, whereas the third
branch is shifted by row index + 1.

For the sample workflow, another issue arises at the SAM-To-BAM
node (fourth column). As the layout algorithm processes columns
before rows, SPP and MACS2 are visited already and taken into
account by the top SAM-To-BAM node. Therefore, only bottom
IGVtools count has to be rearranged. The more branches are
starting at the right side of the workflow, the more the layout will
span in height.

T4.1: D3 API offers drag and drop behavior via dragstart.
As multiple events might belong to the same SVG element,
in D3, it is necessary to prevent those not being fired with
d3.event.sourceEvent.stopPropagation();

T4.2: D3 API only provides general zoom and panning support.
For the zooming behavior, the control key has to be pressed, as one
should be able to still scroll the window in height. We therefore
extended the basic zoom support of D3. Zooming and panning then
provides a flexible working area. Nevertheless, a double click event
in the background area triggers the workflow to automatically fit to
the window size. Additionally the visualization takes advantage of
responsive behavior via Bootstrap CSS library.

T4.3: Radio buttons located below the tool parameters table were
added to allow quickly switching between both layouts. On the
downside, the layout to display is set via enumeration parameter.
This solution unfortunately requires a new run of the D3 script.

T5: On node selection, unified with the table creation event, a re-
cursive graph traversal algorithm is initiated. The algorithm obeys
the laws of DFS (processed from right to left). It extracts every
branch and at last returns a set of nodes and links. These are then
dyed orange. During development, further experiments were tested,
e.g. allowing the analyst to select multiple paths. Despite being
useful in some cases, it might misguide some users and therefore
was removed again.

5.1 The Big Picture

Combining the features above, a powerful visualization lets domain
experts use a fair variety of interaction mechanics to showcase their
area of interest concerning different aspects within the workflow.
Despite presenting this work in the domain of biomedical research,
the user base is able to load any dataset imported from Galaxy - not
related to biomedical data necessarily.

6 Conclusion and Future Work

In this work, we presented a visualization for biomedical workflows
within the Refinery Platform. Usability aspects and a large set of
features focusing on interactivity and compact data representation
were among the main goals achieved in this work. In addition, dis-
tinctive tasks considering visual encoding and implementation in-
cluding limitations were discussed.

Analogous to similar work, showing the optimal level of detail is
key to success of a good workflow visualization. When dealing with
smaller workflows, this problem can be solved manually through
glyph design in conjunction with the appropriate usage of visual
variables. For larger workflows, the approach of Maguire et al.
in [Maguire et al. 2012] automates the design of glyph creation
through taxonomy and categorization, but still, the workflow has to
fit onto various resolutions. It seems inevitable that a variable level
of detail (semantic zoom as discussed in Section 4) is the grand so-
lution to overcome this difficulties when visualizing data in detail
on demand. In order to adapt to responsive window space, geomet-
ric zoom was implemented. Concerning semantic zoom, the node
and link design cover expand as well as collapse mechanics to show
and hide (in)significant information within the workflow.

For future work - as the workflow visualization is part of the up-
coming release by the Refinery Team - improving stability and con-
stantly fixing and or adding minor issues is of high importance.
In particular, some enhancements to the visualization were dis-
cussed: The layout algorithm still could be improved considering
links crossing each other in certain areas. Altering glyphs to indi-
cate data flow direction, assign different colors for input node links
or even encapsulate more node information into tooltips might be
beneficial in some cases too.

Another long-term goal of the Refinery Team is to integrate an ad-
ditional layer of meta information into the visualization: the view
and interaction with provenance data of workflow execution. This is
important, as provenance data opens possibilities like experiment-
ing with changes to tool parameters, files or the workflow topology
(e.g. adding or removing tools). Changes are then recorded at all
stages over time which, in turn, preserves reproducibility of exper-
iments. In [Begley and Ellis 2012], it is stated that scientists tried
to confirm 53 published findings related to drug development re-
search. They proposed that only 6 preclinical studies were able to
be reproduced and confirmed. This example should motivate bioin-
formatics and software engineers to thrive forward provenance data
in applications for Life Sciences.

The workflows created and executed in Galaxy are annotated with
provenance data. Just like workflows, provenance data is imported
to Refinery and stored in the ISA-Tab format [Rocca-Serra et al.
2010]. As further work, the workflow visualization could be ex-
tended by the addition of a time-varying view. This would promote
the idea of reproducibility preservation. Performance and scalabil-
ity issues could be solved through aggregation of similar topologi-
cal graph structures [Maguire et al. 2013].



Figure 16: This workflow visualization based on the Refinery layout partially contains expanded nodes and shows the approach of a variable
width for columns inside the layout grid.
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Figure 17: All features together result in a state of the art workflow visualization providing interaction, minimalistic or detailed view -
collapse and expand behavior as well as the HTML table are on-demand features and can be disabled by the user.


